
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2010-12

A configuration framework and
implementation for the least privilege
separation kernel

Quek, Chee Luan
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/4954

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A CONFIGURATION FRAMEWORK AND
IMPLEMENTATION FOR THE LEAST PRIVILEGE

SEPARATION KERNEL

by

Chee Luan Quek

December 2010

 Thesis Co-Advisors: Cynthia E. Irvine
 Paul C. Clark

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
A Configuration Framework and Implementation for the Least Privilege
Separation Kernel
6. AUTHOR(S) Chee Luan Quek

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The Least Privilege Separation Kernel (LPSK) configuration vector defines the initial secure state and the operational
configuration of the kernel, including its security policies. Enhancements made to the LPSK functional specification
necessitated substantial changes to the configuration vector data format defined previously. Moreover, the earlier
format used an ad-hoc syntax, which did not adhere to any standard. This work leverages Extensible Markup
Language (XML) to standardize the configuration vector format. The new configuration vector format is depicted in a
XML Schema, and its limitations are discussed. A more compact binary representation is defined, with an offline tool
provided to generate binary configuration vectors for the target platform. Creation of a configuration vector file is a
laborious and error-prone task. A good user interface can ease the process by removing underlying complexities from
users. Pertinent features of XML editors were assessed in a survey. Using these as requirements, an XML editor with
a suitable graphical user interface was selected.

15. NUMBER OF
PAGES

181

14. SUBJECT TERMS
Configuration vector, Configuration vector tool, LPSK, , XML, XML editors, XML Schema, XSD

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

A CONFIGURATION FRAMEWORK AND IMPLEMENTATION FOR THE
LEAST PRIVILEGE SEPARATION KERNEL

Chee Luan Quek
Civilian, Defence Science & Technology Agency, Singapore

B.Eng., National University of Singapore, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2010

Author: Chee Luan Quek

Approved by: Cynthia E. Irvine
Thesis Co-Advisor

Paul C. Clark
Thesis Co-Advisor

Peter J. Denning
Chairman, Department of Computer Science

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

The Least Privilege Separation Kernel (LPSK) configuration vector defines the initial

secure state and the operational configuration of the kernel, including its security policies.

Enhancements made to the LPSK functional specification necessitated substantial

changes to the configuration vector data format defined previously. Moreover, the earlier

format used an ad-hoc syntax, which did not adhere to any standard. This work leverages

Extensible Markup Language (XML) to standardize the configuration vector format. The

new configuration vector format is depicted in a XML Schema, and its limitations are

discussed. A more compact binary representation is defined, with an offline tool provided

to generate binary configuration vectors for the target platform. Creation of a

configuration vector file is a laborious and error-prone task. A good user interface can

ease the process by removing underlying complexities from users. Pertinent features of

XML editors were assessed in a survey. Using these as requirements, an XML editor with

a suitable graphical user interface was selected.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. PURPOSE OF STUDY..1
C. THESIS ORGANIZATION..2

II. BACKGROUND ..3
A. THE LEAST PRIVILEGE SEPARATION KERNEL3
B. THE LPSK CONFIGURATION VECTOR..5
C. THE LPSK CONFIGURATION VECTOR TOOL6
D. OVERVIEW OF XML AND RELATED STANDARDS.............................7

1. Extensible Markup Language (XML)..7
2. XML Schema..8
3. Document Object Model and Simple API for XML.........................9

E. BENEFITS OF AN XML-BASED CONFIGURATION VECTOR9
F. SUMMARY ..10

III. CONFIGURATION VECTOR TOOL REQUIREMENTS11
A. HIGH-LEVEL REQUIREMENTS..11
B. DETAILED REQUIREMENTS...14

1. Configuration Vector Format...14
a. Header ...14
b. Audit Buffer Configuration..14
c. Run-Time LPSK..14
d. Partitions ...15
e. Partition Flow Policies..16
f. Resources...16

2. XML Representation ...22
3. Binary Representation...23
4. Graphical User Interface (GUI) ...23

a. Basic Functional Requirements ...23
b. Usability Requirements ...24

5. Format Conversion ..25
6. Keyed-hash Message Authentication Code Generation25

C. SUMMARY ..25

IV. EVALUATION OF XML EDITORS ..27
A. INITIAL SELECTION CRITERIA ..28

1. Graphical XML Editor..28
2. XSD Validation...28
3. Availability of U.S. Vendor ...28
4. OS Platform Support...29
5. Type...29
6. License Pricing ...29

viii

7. Open-source..29
8. License Type ...30

B. OUTCOME OF INITIAL SELECTION...30
C. FEATURES COMPARISON ...58

1. Nested Grid View ...58
2. Source-Code View..58
3. Auto-Completion..58
4. Embedded XML Schema Editor ..59
5. Error Handling...59

D. FINAL EVALUATION OUTCOME...59
E. SUMMARY ..67

V. DESIGN AND IMPLEMENTATION ...69
A. CONFIGURATION VECTOR FORMAT..69

1. XML Representation ...69
2. Binary Representation...82

B. CONFIGURATION VECTOR TOOL UTILITIES87
1. Format Conversion ..87
2. Keyed-Hash Message Authentication Code Generation93

C. SUMMARY ..94

VI. TESTING..95
A. TEST CASES ...95

1. Functional Tests ...95
2. Boundary Value Tests..98
3. Consistency Checking Tests ..121

B. TEST RESULTS ..129
C. SUMMARY ..137

VII. CONCLUSION ..139
A. RESULTS ...139
B RELATED WORK ..140
C. RECOMMENDATIONS FOR FUTURE WORK....................................140

APPENDIX A. INSTALLATION GUIDE...143
A. SYSTEM REQUIREMENTS ...143
B. PROCEDURES..143

APPENDIX B. TEST PROCEDURES...147
A. SETUP...147
B. PROCEDURES..148

1. Functional Tests ...148
2. Boundary Value Tests..154
3. Consistency Checking Tests ..154

LIST OF REFERENCES..157

INITIAL DISTRIBUTION LIST ...161

ix

LIST OF FIGURES

Figure 1. Concept of partitions, subjects, other resources and information flow.
(After [2])...5

Figure 2. An example of nested XML elements ...8
Figure 3. Overview of the flow of interactions of the trusted user using the tool

(After [2])...13
Figure 4. This display of the sample LPSK configuration vector using the Angur

XML Visualizer illustrates its poor visualization quality57
Figure 5. Error handling in Altova XMLSpy, which also illustrates a nested grid

view..63
Figure 6. Error handling in Liquid XML Studio. ..64
Figure 7. Error handling in <oXygen/> XML Editor..65
Figure 8. Error handling in Stylus Studio..66
Figure 9. Code snippet of the SAK partition constraint, defined in the context of a

configuration vector. ..67
Figure 10. XML Schema with header, audit_buf (audit buffer configuration), runtime

and partitions details..74
Figure 11. XML Schema with policy, dseg (data segment) and mseg (memory

segment) details. ..75
Figure 12. XML Schema with eventcount and sequencer details.76
Figure 13. XML Schema with device details. ...77
Figure 14. XML Schema with process, subject and subj_res_perms (subject-to-

resource permission) details...78
Figure 15. Binary representation of values of enumerated fields......................................84
Figure 16. Format conversion command-line interface ..87
Figure 17. Dependencies between classes in the Format Conversion utility92
Figure 18. HMAC generation command-line interface...93
Figure 19. Expected output of converting XML configuration vector to binary144
Figure 20. Expected output of converting binary configuration vector to XML144
Figure 21. Expected output from the HMAC utility ...145
Figure 22. Expected results of the boundary value tests ...154
Figure 23. Expected results of the consistency checking tests..155

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF TABLES

Table 1. Result of the initial evaluation of XML editors (This information is
accurate as of September 2010) ...31

Table 2. Additional information on the XML editors evaluated (This information is
accurate as of September 2010) ...42

Table 3. Comparison of the XML editors by features (This information is accurate
as of September 2010) ...60

Table 4. User-defined data types defined in the LPSK Configuration Vector XML
Schema...70

Table 5. Referential constraints defined in the LPSK XML Schema79
Table 6. Uniqueness constraints defined in the LPSK XML Schema81
Table 7. Interfaces provided to the LPSK for traversing configuration vectors85
Table 8. Java classes of the format conversion utility ...88
Table 9. Functional Test Cases ..96
Table 10. Boundary Value Test Cases ...99
Table 11. Consistency Checking Tests ..122
Table 12. Functional Test Results..129
Table 13. Boundary Value Test Results...130
Table 14. Consistency Checking Test Results ...135
Table 15. Functional Test Procedures..149
Table 16. Boundary Value Test Procedures...154
Table 17. Consistency Checking Test Procedures ...155

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

DOM Document Object Model

DTD Document Type Definition

GUI Graphical User Interface

HMAC Keyed-Hash Message Authentication Code

KVM Keyboard, Video and Mouse

LPSK Least Privilege Separation Kernel

MAC Mandatory Access Control or Message Authentication Code or Medium Access
Control

MLS Multi-Level Secure

NIST National Institute of Standards and Technology

PAS PIFP Acyclic Subset

PIFP Partitioned Information Flow Policy

PL Privilege Level

PTP Partition To Partition

SAK Secure Attention Key

SAX Simple API for XML

SKPP Separation Kernel Protection Profile

STR Subject To Resource

TCX Trusted Computing Exemplar

W3C World Wide Web Consortium

XML Extensible Markup Language

XSD XML Schema Definition Language

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

ACKNOWLEDGMENTS

I would like to express my gratitude to both my thesis co-advisors, Professor

Cynthia Irvine and Paul Clark, for their patience and guidance through the course of this

thesis, and to Professor Don Brutzman for loaning us a copy of his department’s

XMLSpy license. I would also like to thank my Singapore sponsor, the Defence Science

& Technology Agency (DSTA), for giving me the opportunity to pursue my postgraduate

studies, as well as the professors and lecturers at NPS who have taught me, and from

whom I have learned a lot. I am also grateful to my family for giving me support and

continuous encouragement during my course of study at NPS.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

The operational configuration of a separation kernel is provided as configuration

data that the kernel interprets during initialization. The configuration data for the Least

Privilege Separation Kernel (LPSK) of the Trusted Computing Exemplar (TCX) project

[1] is called the LPSK configuration vector. The configuration vector defines the initial

secure state and the operational configuration of the LPSK. It reflects the policies that

regulate the information flow among resources, which may include the mandatory access

control (MAC) policies. The correctness of the configuration vector is critical for

ensuring the intended security policy is enforced by the kernel. A configuration vector

tool translates and presents configuration data to the system administrator in a visual

form that enables him to create valid configuration vectors more easily.

A. MOTIVATION

Since the configuration vector format was last defined, several enhancements had

been introduced in the LPSK Functional Specification [2]. In addition, the structure of the

earlier LPSK configuration vector human-readable format used an ad-hoc syntax that did

not adhere to any standard. The binary format could not be scaled to support an increased

number of partitions, processes, and resources without significantly increasing the file

size of the configuration vector to be loaded into the LPSK. This posed a problem for

platforms with limited memory resources. To address these problems, it was imperative

to define a new configuration vector format and to develop a configuration vector tool

that supports the new format.

B. PURPOSE OF STUDY

Extensible Markup Language (XML) [3] is an open standard of the W3C and has

been widely adopted in many real world applications to structure and display data. This

thesis project sought to develop an offline tool that is able to format the human-readable

configuration vector for the LPSK in XML. Two major elements were developed as part

of this work. The first was a XML Schema. The second was a program that reads and

2

converts a LPSK configuration vector between XML and binary representation for the

LPSK, validates the vectors against the schema, and tests them against the rules for

configuration values and bounds. The primary research objective was to determine

whether an XML-based representation of the LPSK configuration is viable, determine

whether it is a better representation of the LPSK configuration relative to other formats,

how to implement the XML Schema that formalizes the configuration vector data

structure and validation rules, and to determine the testing and validation required. The

task of creating configuration vectors is tedious and error-prone because there are many

settings to configure. A subsidiary objective of this project is to recommend a graphical

user interface that is useful to system administrators when they create configuration

vectors and helps to minimize human-generated configuration errors.

C. THESIS ORGANIZATION

The remainder of the thesis is organized as follows: Chapter II begins by

providing the background on the LPSK, the LPSK configuration vector and the

configuration vector tool. It also provides a brief description of related XML

technologies, and summarizes the benefits of an XML representation of the LPSK

configuration vector. Chapter III outlines the high level and detailed requirements for the

tool. Based on these requirements, Chapter IV surveys existing XML editors; it states the

selection criteria and outlines the selection process for suitable XML editors to meet the

Graphical User Interface (GUI) requirements for the tool. Chapter V describes the design

decisions and implementation of the various components of the tool - the XML Schema,

the binary configuration vector format, the format conversion utility and the Keyed-hash

Message Authentication Code (HMAC) utility. The detailed installation procedure and

instructions for using the Format Conversion utility and HMAC utility is documented in

Appendix A. Extensive testing was performed on the implementation. Then, Chapter VI

outlines the tests that were performed and summarizes the test results. The test setup and

details of the test procedures are documented in Appendix B. Chapter VII concludes by

summarizing the results achieved, discussing related work, and providing

recommendations for further work.

3

II. BACKGROUND

The Trusted Computing Exemplar (TCX) project is an on-going effort by Naval

Postgraduate School Center for Information Systems Security Studies and Research (NPS

CISR) to provide a working prototype that demonstrates the process of building high

assurance systems. One of the deliverables is a least privilege separation kernel (LPSK)

that is suitable for use in multilevel secure (MLS) embedded systems. The first three

sections of this chapter provide background on the LPSK, the LPSK configuration vector

and the configuration vector tool. The main contribution of this thesis is to design and

develop a new LPSK configuration vector using Extensible Markup Language (XML). A

brief description of XML technologies related to this thesis is also presented. The benefits

of using XML to represent the configuration vector are presented in the last section of

this chapter.

A. THE LEAST PRIVILEGE SEPARATION KERNEL

In emergency IT systems, sensitive Personally Identifiable Information (PII) data,

such as electronic medical records, are protected with strict access control mechanisms to

ensure the privacy of individuals. During emergencies, it is desirable that these data be

accessible by first responders who often require quick access to them in order to handle

the crisis. When the emergency is over, the IT system should revert to its original

configuration, where all temporary accesses to PII data are revoked. A possible

architecture to realize this is through a specialized separation kernel.

The concept of separation kernels was introduced in 1981 by Rushby [4]. It

described a separation kernel to be an environment that appears “as if each regime is a

separate, isolated machine, and information can only flow from one machine to another

along known external communications lines. One of the properties we must prove for a

separation kernel, is that there are no channels for information flow between regimes

other than those explicitly provided.” In 2007, the National Security Agency published

the Separation Kernel Protection Profile (SKPP) [5], which is a security requirements

4

specification for separation kernels suitable to be used in environments requiring high

robustness. In this specification, the primary security function of a separation kernel is to

isolate the resources within a MLS system into security policy-equivalence classes

(partitions), and to enforce the rules for authorized information flows between and within

partitions.

One of the initiatives under the TCX project is the development of a LPSK that

meets the SKPP requirements. It further enforces the Principle of Least Privilege [6] by

granting only the least set of privileges to subjects. The rationale for doing so is to limit

the amount of damage that results from accidental errors or malicious executions. Trusted

subjects are allowed to execute under relaxed MLS policies that allow information

exchanges between resources of different equivalence classes. In the example of an

emergency IT system, trusted subjects may be configured to allow the first responders

temporary access to restricted data that are not available to them under normal

circumstances.

Figure 1 depicts the concept of partitions, subjects, other resources and

information flows in the LPSK. In this example, there are three partitions, with five

subjects and seven other resources allocated to their respective partitions. The arrows

represent the directions of information flow between subjects and other resources that are

allowed by policy. The isolation and information flow policies are defined within the

separation kernel’s configuration data, i.e., the LPSK configuration vector.

5

Figure 1. Concept of partitions, subjects, other resources and information flow.
(After [2])

B. THE LPSK CONFIGURATION VECTOR

The configuration vector is required by the LPSK to establish an initial secure

state. It defines the LPSK runtime scheduling, processes and subjects (active entities) and

other resources (I/O and network devices, segments and synchronization primitives) that

are exported by the LPSK. Subjects and other exported resources are allocated to

partitions as defined by the configuration vector. The configuration vector also defines

the LPSK’s security policy regarding inter-partition information flow and subject-to-

resource access bindings. This allows the LPSK to isolate subjects and other exported

resources from one another and control the information flows between subjects and other

resources.

6

Prior to this work, there was a configuration vector format defined [7]. Since that

work was completed, the LPSK Functional Specification has matured. As a result, the

early configuration vector lacked many of the new settings that have since been specified.

For example, it did not support the configuration of audit mechanisms that would be

incorporated in the future. As another example, device configurations are also hardcoded

in the LPSK. A new configuration vector would allow audit events and devices to be

configured on the target platform without having to recompile the LPSK.

In addition, the number of partitions, processes and subjects was hardcoded in the

existing LPSK configuration vector definition. Because of this, the file size of the

configuration vector was fixed to allow for the maximum number of partitions, processes

and subjects that the LPSK supports. Such an approach was still feasible because the

current LPSK prototype was limited to eight partitions and one process per partition.

However, since the LPSK will eventually support up to 256 partitions and 512 processes,

per the specification, the footprint of the configuration vector may have become too large

for embedded devices with limited memory resources.

Defining these configurations within a configuration vector instead of hard-

coding them in the kernel provides flexibility to change settings without recompiling a

new kernel, at the expense of more configuration responsibilities on the administrator. A

good configuration vector tool is required for this task.

C. THE LPSK CONFIGURATION VECTOR TOOL

A LPSK Configuration Vector Tool was developed in 2009 [7]. The outcome of

that research was an offline tool with a graphical user interface that allows a trusted user

to visualize, create and organize LPSK configuration vectors. The tool was developed

using Java Swing components and was based on the primitive LPSK configuration vector

format that existed at that time. A new tool that supports the new configuration vector

format was required. Creating a configuration vector for the LPSK is a complex and

laborious task because there are many settings to configure. The main purpose of this tool

7

is to assist a user when creating configuration data that correctly reflect the intended

system security policy. Usability of the new tool is thus an important aspect that must be

considered.

The structure of the earlier LPSK configuration vector format was ad-hoc syntax

and did not adhere to any standard. One of the other recommendations made in the 2009

work was the development of a new XML-based configuration vector format.

D. OVERVIEW OF XML AND RELATED STANDARDS

There are many standards, technologies and publications that are related to XML.

This section briefly describes XML technologies and standards that are related to this

thesis. Detailed specifications of XML are usually publicly available from the World

Wide Web Consortium (W3C).

1. Extensible Markup Language (XML)

XML is a standard markup language recommended by the W3C for representing

data in structured formats using tags. The tags provide information about the content

enclosed. Elements in XML documents can be nested to form a structure. In the example

shown in Figure 2, there are multiple processes in a LPSK configuration vector; each

process contains multiple subjects and each subject has subject-to-resource permissions

(subj_res_perms) associated with it. Details of the specifications can be found in [3].

8

Figure 2. An example of nested XML elements

XML has been widely adopted in many real world applications to structure,

display, standardize and exchange data. Examples of the use of XML in the security

domain include the OASIS WS-Policy framework policy assertions representation [8]

and SOAP Message Security (e.g., Web Services Security Policy Language [9]) that

allows Web Services to express security policies.

2. XML Schema

An XML Schema provides a grammar that is used to describe the structure of

XML documents based on a set of pre-defined elements. These are defined in the XML

Schema definition language specifications that can be found in [10], [11] and [12]. Since

an XML Schema is defined using XML, it can also be edited using any XML editor.

Sometimes, a Document Type Definition (DTD) [13] is used in place of an XML Schema

to enforce a valid XML document structure.

9

An XML document may exist without a DTD or XML Schema. Without them,

the computer can only determine if the document is well-formed. By coupling the XML-

based LPSK configuration vector with a well-defined DTD or XML schema, it can be

further used by computers to automatically validate the configuration vector to check for

inconsistencies and errors.

3. Document Object Model and Simple API for XML

The Document Object Model (DOM) provides a standard set of objects for

representing HTML and XML documents, a standard model of how these objects can be

combined, and a standard interface for accessing and manipulating the objects [14]. SAX

is an alternative to DOM [15]. It was originally a Java-only application programming

interface (API) and was the first widely adopted API for XML in Java. It has since

evolved and there are currently implementations available for several programming

language environments other than Java. Both DOM and SAX provide the APIs for

applications to parse and traverse XML documents and validate them against the DTDs

and XML Schemas defined.

E. BENEFITS OF AN XML-BASED CONFIGURATION VECTOR

The benefits of using XML to represent the LPSK configuration vector are

multifold. XML is text-based, and is an open standard that is vendor and platform

independent. There exist a lot of tools that are readily available to view and edit an XML-

based configuration vector. It is thus convenient, flexible and viable to be adopted as a

standard format. XML is powerful in representing a hierarchical tree structure with

multiple nested levels, making it natural for the configuration vector to store relationships

between partitions, processes, subject-to-resource permissions. Using an XML over a

binary representation makes the LPSK configuration vector both human-readable and

machine-readable. This would make it possible for a human to scrutinize and detect

accidental or malicious modification in the configuration. In addition, the XML schema

would form the basis for user-configurable rules that allows flexibility and extensibility.

It also allows relevant information to be readily transformed from the XML

10

representation to multiple display formats and native representations. The main

disadvantage of using XML is that it increases the size of the configuration vector,

requiring more storage resources.

F. SUMMARY

This chapter outlined the background the TCX LPSK, the LPSK Configuration

Vector and the Configuration Vector Tool. It also introduced XML standards relevant to

this thesis, and briefly described the benefits of having an XML-based configuration

vector. The next chapter describes the functional requirements of the LPSK

Configuration Vector Tool.

11

III. CONFIGURATION VECTOR TOOL REQUIREMENTS

The U.S. Government Protection Profile for Separation Kernels (SKPP) [5] states

the requirements for a configuration function that provides configuration vector

generation and validation capability to convert configuration vectors from a human-

readable form into a machine-readable (e.g., binary) form, and vice versa, while

preserving the semantics of the data. The LPSK Configuration Vector Tool is an

application that provides this capability.

A trusted individual or authorized administrator prepares a human-readable

representation of a configuration vector using the specified format, and saves it to a file.

The file is then given as input to the LPSK Configuration Vector Tool, which produces as

an output, a binary representation of the configuration vector. Multiple configuration

vectors may be created. The binary configuration vectors are then distributed with the

run-time LPSK, non-LPSK executables and other products that need to be installed.

Subsequently, during the booting process, a LPSK Initializer program receives a binary

configuration vector from the LPSK Boot Loader program, and loads and configures the

run-time LPSK. Secondary storage segments and applications, as specified in the

configuration vector, are also loaded at this time.

A. HIGH-LEVEL REQUIREMENTS

The high-level requirements of the LPSK Configuration Vector Tool are derived

from the SKPP requirements for Configuration Tool Design. The LPSK Product

Functional Specification [2] refines these requirements, which are described here.

1. The LPSK Configuration Vector Tool shall be an offline tool that shall be

capable of executing on a commodity operating system.

2. The LPSK Configuration Vector Tool shall take as an input a human-

readable configuration vector and the file name where the output binary configuration

vector shall be written. The LPSK Configuration Vector Tool shall produce a binary

12

equivalent of the input human-readable vector, which it will output to the specified file.

The binary configuration vector shall comply with the data format specified in Section B,

Detailed Requirements.

a. The LPSK Configuration Vector Tool shall verify that the input

human-readable configuration vector complies with the data format. If the tool detects a

syntax error, then an informative message shall be displayed, and the processing shall be

stopped without producing a binary vector.

b. If the input human-readable configuration vector is syntactically

correct, but the LPSK Configuration Vector Tool detects an invalid setting in the input

human-readable configuration vector (e.g., a number that is outside of the defined range

for a given field), then the tool shall display an informative message and stop the

processing without producing a binary vector.

3. The LPSK Configuration Vector Tool shall take as an input a binary

configuration vector and the file name where the output human-readable configuration

vector shall be written. The LPSK Configuration Vector Tool shall produce a human-

readable equivalent of the input binary vector, which it will output to the specified file.

The output human-readable configuration vector shall comply with the format specified

in Section B Detailed Requirements.

a. If the LPSK Configuration Vector Tool detects that the binary

configuration vector is not compliant with the specified format, then the tool shall display

an informative message, and the processing shall be stopped without producing a human-

readable vector.

b. If the LPSK Configuration Vector Tool detects an invalid setting

within the binary configuration vector, then the tool shall display an informative message,

and the processing shall be stopped without producing a human readable vector.

4. The LPSK Configuration Vector Tool shall provide the option to calculate

and display a message authentication code (MAC) for an input configuration vector,

whether the input configuration vector is binary or human-readable. This is to place a

cryptographic seal on the generated configuration vector, so that the user can be assured

13

that the integrity of the configuration vectors has not been compromised between when

they are generated and when they are verified.

a. The message authentication code shall be displayed as the ASCII

representation of its hexadecimal value.

b. The encryption key used to generate the message authentication

code will be generated from text entered by a trusted individual when prompted by the

LPSK Configuration Vector Tool.

5. The LPSK Configuration Vector Tool may also provide a user interface to

assist in the creation of a human-readable configuration vector.

Figure 3 provides an overview of the flow of interactions of the trusted user using

the tool.

Figure 3. Overview of the flow of interactions of the trusted user using the tool
(After [2])

14

B. DETAILED REQUIREMENTS

1. Configuration Vector Format

Both human-readable and machine-readable forms of the configuration vector

shall contain the fields in the order defined below. These data requirements are derived

from [2]. The data types shall be defined in Chapter V, Design and Implementation.

a. Header

The following information shall be in the header:

 Magic number (binary vector)

 Version number

 Vector description (a human-readable ASCII description of the vector)

b. Audit Buffer Configuration

Audit buffer configuration is declared near the beginning of the

configuration vector because it may impact the audit records that are generated during

initialization.

 Enable audit? (optional, default=yes)

 Maximum number of audit records to buffer (between 1 and 65535)

 Action when buffer is full (overwrite, halt, shutdown) (optional,

default=halt)

 Time delay prior to shutdown (optional, between 0 and 60 (seconds)

default=no delay)

c. Run-Time LPSK

The declaration of the Run-Time LPSK shall include the following:

 Executable information:

 The path to the kernel executable on secondary storage

15

 The path to the kernel call gate configuration on secondary

storage

 Configuration of the LPSK message area:

 Display LPSK messages to the user? (default = no)

 Type of messages (status messages, partition with focus, both)

 Number of video character lines to use for messages

 Reserved memory ranges: (0 or more of the following)

 Start address

 Size

d. Partitions

The declaration of partitions includes the following

 Duration for one round-robin scheduling of all processes in all

partitions (positive value)

 Declaration of each partition: (1 to 256 of the following entries)

 Partition ID (0 through 255 and is unique across the vector)

 Partition description (a human-readable ASCII description of

the partition)

 Percentage of a round-robin schedule

 Percentage of non-kernel primary memory allocated to the

partition

 Partition ID of the secure attention key (SAK) handling partition. This

is an active partition. An active partition is a partition that has a process in

its set of resources.

16

 Partition ID of the initial partition with focus. This is an active

partition.

e. Partition Flow Policies

The declaration of flow policies includes the following:

 Partition-to-partition (PTP) policy (0 or more of the following)

 Partition ID of a partition with a subject requesting a flow. This

is an active partition.

 Partition ID of a partition with a resource

 Mode of access for the flow between the above two partitions

 Halt if a subject‐to‐resource (STR) policy is not included in the PTP

(default=no)

 Partitioned information flow policy subset (PAS): (0 or more of the

following)

 Partition ID of a partition with a subject requesting a flow. This

is an active partition.

 Partition ID of a partition with a resource

 Mode of access for the flow between the above two partitions

(No access (NA), Read-only (RO), Read-write (RW), Write-

only (WO))

f. Resources

 Data Segments (0 or more of the following entries)

 Path

 Data Segment description (a human-readable ASCII

description of the data segment)

17

 Partition ID of the home partition

 Privilege level to be assigned to the data segment (0 to 3)

 Start State (swapin, swapout)

 Audit (optional, default=none)

 When a swapin is requested (success, failure, both)

 When a flush is requested (success, failure, both)

 When a swapout is requested (success, failure, both)

 Memory Segments (0 or more of the following entries)

 Memory Segment ID (unique across the vector)

 Memory Segment description (a human-readable ASCII

description of the memory segment)

 Size

 Partition ID of the home partition

 Privilege level to be assigned to the memory segment (0 to 3)

 Audit (optional, default=none)

 When created (success, failure, both)

 Eventcounts (0 to 64 of the following entries)

 Eventcount ID (0 through 63)

 Eventcount description (a human-readable ASCII description

of the eventcount)

 Partition ID of the home partition

 Audit (optional, default=none)

 When an advance is requested (success, failure, both)

18

 When a read is requested (success, failure, both)

 When an await is requested (success, failure, both)

 When a wakeup occurs (success, failure, both)

 Sequencers (0 to 64 of the following entries)

 Sequencer ID (0 through 63)

 Sequencer description (a human-readable ASCII description of

the sequencer)

 Partition ID of the home partition ID

 Audit (optional, default=none)

 When a ticket operation is requested (success, failure,

both)

 Devices (variable number of the following entries). A device can be a

keyboard, a network device, a screen device or a PL1 message device.

The total number of keyboard devices, the total number of PL1

message devices, and the total number of screen devices must be

between 0 and 1.

 Major number

 Minor number

 Type (DATA or CONTROL)

 Device description (a human-readable ASCII description of the

device)

 Partition ID of the home partition

 Attribute (multiplexed or dedicated) [may not be configurable]

19

 If dedicated and not a KVM device, the partition ID

with initial access

 If a keyboard device:

 Incoming scan code buffer size (between 32 and 1024).

 If a network device:

 Initial state (started, stopped)

 Encryption required?

 Read behavior (promiscuous, non-promiscuous)

(optional, default=non-promiscuous)

 Incoming frame buffer size (between 32 and 256)

 Outgoing frame buffer size (between 32 and 256)

 MAC address (optional). The MAC address format is

XX:XX:XX:XX:XX, where X is a hexadecimal digit

between 0x0 and 0xF.

 If a screen device:

 Number of video character lines

 If a PL1 message device:

 Number of video character lines

 Audit (optional)

 When a read data operation is requested? (success,

failure, both)

 When a write data operation is requested? (success,

failure, both)

20

 When a read metadata operation is requested? (success,

failure, both)

 When a write metadata operation is requested?

(success, failure, both)

 Processes (1 to 512 of the following entries)

 Process ID (unique across the vector)

 Partition ID of the home partition. This is an active partition.

 Process description (a human-readable ASCII description of

the process)

 Percentage of the partition time slice (optional, default=equally

split)

 Subject declaration (at least 1, and a maximum of 3 per

process)

 Trusted?

 Path to an executable file

 Path to its call gate configuration file (optional,

default=none)

 Privilege level (between 0 and 3)

 Kernel gate calls callable by subject (optional,

default=none)

 Subject-to-resource permissions. It was decided to

associate permissions with the subjects rather than with

the other resources (i.e., rather than ACLs) because it

appeared to be the best way of describing the

permissions related to sending signals to subjects.

21

 Resource type (eventcount, sequencer, device,

subject, etc) to which the subject has access

 Resource ID

o For eventcounts, sequencers, and

memory segments, this is the ID of the

resource declared earlier.

o For data segments this is the path on

secondary storage.

o For devices, this is <major, minor,

DATA> or <major, minor, CONTROL>.

o For subjects this is the <process ID,

privilege level (PL)> pair.

 Permitted actions on the resource by the subject

o For eventcounts, data segments, memory

segments, network devices, screen

devices, and PL1 message devices and

other subjects, they are RO, RW and

WO.

o For sequencers, they are RW.

o For keyboards, they are RO.

 Audit (optional auditable events, default = no auditing

of the subject)

 When an interrupt is invoked

 When a signal is received

 When sending a signal (success, failure, both)

22

 When reading from a device (success, failure,

both)

 When writing to a device (success, failure, both)

 When reading an eventcount (success, failure,

both)

 When advancing an eventcount (success,

failure, both)

 When waiting on an eventcount (success,

failure, both)

 When a wakeup from an eventcount occurs

 When ticketing a sequencer (success, failure,

both)

In addition, the tool shall validate a configuration vector against the following

rules:

 There is at least one active partition.

 The total of CPU time allocated to all partitions is exactly 100%.

 A process can only belongs to a partition that has been allocated a time slice

greater than 0%.

 A process is allocated a time slice greater than 0%.

 The sum of the time slices allocated to all processes in a partition is equal to

100% of the time slices allocated to that partition.

2. XML Representation

As mentioned in Chapter II, the human-readable configuration vector shall be

represented in XML. A XML Schema shall be developed to define the XML elements

and their attributes, the number and structure of each element and restrictions on the

23

allowed data types, allowed values, boundary values (value ranges or string lengths) and

the cardinality relationships between elements.

3. Binary Representation

To avoid having to re-compile the LPSK for each target platform whenever the

configurations vary, or to avoid requiring a statically large configuration vector size, the

binary format shall allow the size of the configuration vector to scale dynamically

according to the number of partitions, processes, subjects and resources configured. With

this enhancement, the size of the configuration vector shall automatically adjust based on

the number of partitions, processes, subjects, and resources configured.

4. Graphical User Interface (GUI)

The LPSK Configuration Vector Tool shall provide a Graphical User Interface

(GUI) for users to visualize, create and edit configuration vectors in XML format. The

GUI serves to simplify the editing process so that the user does not have to be conversant

with the configuration vector XML syntax.

a. Basic Functional Requirements

The tool shall provide the following basic editing functionalities:

 Create a new configuration vector.

 Select and load an existing configuration vector based on the file

name provided.

 Load a partially completed configuration vector.

 Save a configuration vector in a file name specified by the user,

and automatically check the configuration for errors before saving

the configuration vector.

 Save a configuration vector to XML even if it is partially

completed or contains errors.

24

 Exit the tool or discard changes to a configuration vector without

saving it.

The user shall to be able to use the XML Schema developed within the

GUI. The GUI shall display the fields according to the format defined in the XML

Schema. In addition, it shall allow the user to check that an XML configuration vector is

both well-formed and valid according the XML Schema defined. This makes it easier for

the user to recognize, diagnose and recover from errors while creating the XML

configuration vector. Validation may be performed either on-demand or on-the-fly. The

tool shall:

 Provide on-demand validation that allows validation of the XML

configuration vector using the XML Schema defined anytime

during the edit process, and prompt the user if an error exists in the

configuration vector.

 Automatically validate the configuration vector against the XML

Schema and prompt the user if there are errors whenever he tries to

save it.

b. Usability Requirements

Usability is a qualitative attribute that assesses the ease-of-use of user

interfaces. The previous work on the LPSK Configuration Vector Tool [7] also made

several recommendations to improve the usability of the tool. One aspect of usability of

the GUI is the set of useful but non-essential features to make it easier for users to

perform the task of editing configuration vectors and to minimize the possibility of errors.

On-the-fly validation is a useful feature since it provides instant feedback to the user, so

that he is continuously guided while editing a configuration vector. The GUI should also

assist the user by directing him to the location in the configuration vector where the error

occurs. This improves usability by making debugging and error recovery easier for users.

25

5. Format Conversion

To convert a configuration vector from XML into binary form, the tool shall first

validate the XML configuration vector against the XML Schema and rules defined. If the

input configuration is not well formed or invalid (due either to invalid values or syntax

errors), the tool shall display an error message, and halt the processing. Otherwise, the

tool shall save the binary output to the file name specified.

To convert a configuration vector from binary into XML form, the tool shall first

convert the binary configuration to its XML representation, and validate the latter against

the XML Schema and rules defined. If the XML document is not well-formed or invalid,

the tool shall display an error message, and halt the processing. Otherwise, the tool shall

save the XML output to the file name specified.

6. Keyed-hash Message Authentication Code Generation

The tool shall provide a utility for the user to generate a keyed-hash message

authentication code (HMAC) for a configuration vector. The message authentication code

for a given configuration vector is calculated using an approved cryptographic hash

function in combination with a secret key supplied by the user. It shall take as an input

the file name of a XML or binary configuration vector and a text password. The

cryptographic algorithm for generating the HMAC shall be a NIST-approved hash

implementation with a message digest size of at least 256 bits [16]. The tool shall first

verify that the configuration vector is syntactically correct. It shall then generate an

encryption key based on the supplied password, use it to calculate the message

authentication code of the input file, and display the code to the user in hexadecimal

format.

C. SUMMARY

This chapter outlined the high level and detailed requirements of the LPSK

Configuration Vector Tool, comprising a suite of utilities to support the creation of LPSK

configuration vectors. These requirements resulted from the SKPP specification, the

LPSK Product Functional Specification and previous work done on the LPSK

26

Configuration Vector Tool. The next chapter describes the evaluation process to ascertain

if a suitable XML editor exists on the market to fulfill the GUI requirements. Chapter V

describes the design and implementation of the LPSK Schema and other components to

meet the remaining requirements.

27

IV. EVALUATION OF XML EDITORS

There are essentially two categories of XML editors – textual and graphical.

Textual editors let users edit the element tags and content directly. They require the users

to have knowledge of the XML syntax. Graphical editors render the XML documents so

that users do not have to manipulate the XML tags directly. Hence, they do not require

users to know the XML syntax. Most graphical editors provide an option for users to

toggle between a graphical view and a text view.

A XML-based LPSK configuration vector provides the flexibility to edit the

configuration vector using any XML editor. An experienced system administrator could

capitalize on the use of the XML format and edit the configuration file with either a text-

based or graphical editor. However, having a graphical user interface (GUI) to

manipulate the configuration vector would be convenient for the user to visualize the

configuration vector, including relationships between its elements, and ease the creation

of configuration vectors by removing underlying complexities from the user. This may

help to eliminate inadvertent errors.

There are many XML editors available on the market. This chapter outlines the

selection criteria for a suitable XML editor for the LPSK Configuration Vector tool and

the outcome of the evaluation process. The objective of this evaluation was to determine

if there are XML editors on the market well-suited for the LPSK Configuration Vector

tool, before proceeding to develop one in-house.

There are existing reviews of XML editors ([17]). However, the reviews are based

on older versions of the editors, so one would expect the reviews to be irrelevant today as

the companies continue to improve their products. Besides, requirements vary depending

on the intended usage, and the LPSK has unique requirements. It was thus timely to do a

new evaluation to select the most suitable software to meet the needs of the TCX project.

28

A. INITIAL SELECTION CRITERIA

This section provides a brief description of the editors surveyed. The starting

point was the list of XML editors from an article published in Wikipedia

(http://en.wikipedia.org/wiki/List_of_XML_editors). The first consideration was whether

the products are actively maintained. Defunct products were removed from consideration,

which left a total of fifty-eight (58) editors to be evaluated. This initial evaluation of the

58 was based on the first three (3) criteria explained below.

1. Graphical XML Editor

Since this research effort was focused on using the XML editor to provide the

GUI for the LPSK Configuration Vector Tool, text-based editors were eliminated from

consideration.

2. XSD Validation

The requirement for XML validation using XML Schema (XSD validation) is for

the editor to be able to use the XML Schema developed within the editor. This allows the

user to check that an XML configuration vector is both well formed and valid according

to the XML Schema. To meet the configuration vector user interface requirements, the

editor shall automatically validate the document and prompt the user if there are errors

whenever he tries to save it. This makes it easier for the user to recognize, diagnose and

recover from errors while creating the XML configuration vector. Validation may be

performed either on-demand or on-the-fly. On-demand validation requires the user to

manually trigger the editor to check if the XML document is valid. With on-the-fly

validation, the editor continuously checks whether the right elements are being used. On-

the-fly validation is a useful feature since it provides instant feedback to the user, so that

he is continuously guided while editing a configuration vector.

3. Availability of U.S. Vendor

Since the LPSK could eventually be used by the U.S. military organizations such

as the U.S. Department of Defense (DoD), it would also be helpful to know if the editor

29

can be purchased through a U.S. vendor. The software can be developed in another

country, but if it can only be purchased through the product Web site and outside of the

U.S., then constraints in procedures could make it difficult for U.S. government

organizations to purchase it.

The following are additional information, but were not used to eliminate any tools

from consideration.

4. OS Platform Support

Since the LPSK Configuration Vector Tool is intended to be used offline, the OS

platform support is not crucial. Nonetheless, a multi-platform tool is desirable because

this would give the users greater flexibility during deployment.

5. Type

The type indicates if the product is available as a standalone editor or if it is a

plug-in. If the product is only available as a plug-in, then there would be additional cost

to purchase and maintain an additional host application.

6. License Pricing

The prices of the products were obtained directly from information published on

the product Web site. Clearly, an extremely costly tool would be less attractive. However,

the editor will not be required on a large number of platforms within the enterprise. Thus,

this is a secondary consideration.

7. Open-source

Access to the source code allows the possibility of analysis for malicious code

and unintended functionality in the product. It would also allow continued maintenance

of the software after the product is no longer in production.

30

8. License Type

 Knowledge of the type of licenses required for the editors is important to ensure

license agreements will not be violated.

B. OUTCOME OF INITIAL SELECTION

Most editor vendors provide evaluation licenses for a limited period. For such

editors, they were assessed using a sample LPSK configuration vector. Otherwise,

assessment was based on information available from the product Web site. A few of the

products could not be downloaded as their Web sites were down during the evaluation

process. Table 1 shows the result of the initial evaluation of the XML editors, with the

products listed in alphabetical order. A indicates the product fully met the requirements,

indicates it partially met the requirements and indicates it did not meet the

requirements. Table 2 shows additional information related to these editors. The list of

fifty-eight (58) products was narrowed to seven (7). The editors elected were Altova

XMLSpy, Liquid XML Studio, <oXygen/> XML Editor, Qxmledit, Stylus Studio, XML

Notepad and XMLSpear. Only <oXygen/> XML Editor, XML Notepad and XMLSpear

provided on-the-fly XSD validation.

31

Table 1. Result of the initial evaluation of XML editors (This information is accurate as of September 2010)

Product Graphical

XML

Editor

XSD

Validation

Availability

of U.S.

vendor

Remarks

1. AjRa XML Editor

1.0

 - 1. XML validation feature was available, but the

configuration vector could not be validated using the

schema. 2. Software reported that it could not find the

declaration of element ‘vector’.

3. Software hung and had to be re-started frequently.

2. Altova XMLSpy

2010

 1. Corporate Sales: us-sales@altova.com. All other

matters: us-office@altova.com.

2. Validated the configuration vector whenever the

configuration was saved.

3. Software provided on-demand validation only.

3. Amaya 11.3 -

32

Product Graphical

XML

Editor

XSD

Validation

Availability

of U.S.

vendor

Remarks

4. Angur XML

Visualizer 1.01

 - Figure 4 shows an example of the visualization of this

tool provided for a sample configuration vector, which is

fairly poor. The XML content could not be seen, and

there is no XML source view.

5. Barium Visual

XSL Transformer

1.5

 - An XSL transformation tool.

6. Beacon Editor No

information

- Could not be downloaded as its Web site domain name

had expired; it was eliminated from further consideration.

7. CEDIT XML - A text-based XML editor.

8. Civ4 Mod Editor No

information

- Could not load the sample LPSK configuration vector.

The user interface is not intuitive and there is no user

manual or online help available.

33

Product Graphical

XML

Editor

XSD

Validation

Availability

of U.S.

vendor

Remarks

9. Cladonia

Exchanger XML

Editor 3.2

1. No U.S. contact listed on Web site.

2. Did not automatically validate the XML configuration

vector when it was saved.

10. codefunk XML

Editor 1

 -

11. Dataset Editor 0.1 No

information

- Could not run; an error message was shown indicating

that a DLL (dynamic link library) was missing; hence

software was eliminated from further consideration.

12. Debugging XSLT

stylesheets using

the Saxon

processor 1.0

 - For debugging XSLT style-sheets.

13. Dexter-XSL 0.3 - A tool for producing XSLT 1.0 compliant stylesheets to

style arbitrary XML data

34

Product Graphical

XML

Editor

XSD

Validation

Availability

of U.S.

vendor

Remarks

14. Easy XML Editor

1.6

 No U.S. contact listed on Web site.

15. EditiX 2010 1. No U.S. contact listed on Web site.

2. Did not automatically validate the XML configuration

vector when it was saved.

16. epcEdit 1.2 -

17. ExtJS 3.0 -

18. EzXML Desktop

1.0

 No

information

- Web site was down during the evaluation; hence,

software was eliminated from further consideration.

19. Java XML XPath

Eclipse Templates

1.5

 - XPath templates.

20. JCAM Engine

with XML Editor

/ Validator 1.9

 - A text-based XML editor.

35

Product Graphical

XML

Editor

XSD

Validation

Availability

of U.S.

vendor

Remarks

21. Jedit Editor 4.3 - A text-based XML editor.

22. JSimplex 3.1 - A visual XSLT tool using the jConfig library

(www.jconfig.org).

23. Liquid XML

Studio 2010

 1. U.S. sales line: +1 866 766 6374

2. Did not automatically validate the XML configuration

vector when it was saved.

3. Software provided on-demand validation only.

24. MoreMotion

Application

Studio 5

 No U.S. contact listed on Web site.

25. Notepad++ with

XML Tools 2.3

 - 1. A text-based XML editor.

2. Did not automatically validate the XML configuration

vector when it was saved.

26. Open XML Editor

1.6

 - A text-based XML editor that supported DTD validation

only.

36

Product Graphical

XML

Editor

XSD

Validation

Availability

of U.S.

vendor

Remarks

27. <oXygen/> XML

Editor 12.0

 1. U.S. line: +1 650 352 1250. Phone Orders US: 1 800

903 4152

2. Did not automatically validate the XML configuration

vector when it was saved.

3. On-the-fly validation was available in text mode only.

28. PTC Arbortext

Editor 5.4

 1. U.S. Phone: 781 370 5000. U.S. Fax: 781 370 6000

2. Word processor like interface.

3. Software could not validate the keys and keyrefs

defined in the configuration vector XML Schema.

29. Quark XML

Author 3.0

 No

information

 1. E-mail: serviceplus@quark.com. U.S. Phone: 800 998

1716

2. Unable to verify if XSD validation with the sample

configuration vector worked correctly since no

evaluation copy was available for download. Eliminated

from further consideration.

37

Product Graphical

XML

Editor

XSD

Validation

Availability

of U.S.

vendor

Remarks

30. Qxmledit 0.4.9 - 1. Tree-view.

2. Did not automatically validate the XML configuration

vector when it was saved.

31. Rinzo XML

Editor 0.8

 - A text-based XML editor.

32. STDU XML

Editor 1.0

 No

information

A text-based XML editor.

33. Stylus Studio

2010

 1. U.S. Enterprise Sales Team: 305 748 4155

2. Did not automatically validate the XML configuration

vector when it was saved.

34. Syntext Serna

XML Editor 4

 1. U.S. Sales & software licenses: sales@syntext.com

2. Did not automatically validate the XML configuration

vector when it was saved.

3. Could not validate the keys and keyrefs defined in the

configuration vector XML Schema.

38

Product Graphical

XML

Editor

XSD

Validation

Availability

of U.S.

vendor

Remarks

35. Veloeclipse 2.07 - A text-based XML editor.

36. VEX 0.5 alpha - Word processorlike interface.

37. Xacobeo 0.13 - GUI for constructing and executing XPath queries.

38. Xcarecrows 4

XML 1.3.8

 No

information

- 1. Tree-view. Required understanding of XML as user

interface used notions of “#attributes” and “#text.”

2. Could not start plug-in in Eclipse to verify that XSD

validation worked as expected, and was eliminated from

further consideration.

39. XMetaL Author

Enterprise 6.0

 1. No U.S. contact listed on Web site.

2. Supported DTD only.

40. XML Assistant

1.2

 North America / Canada: +1 866 647 2003

41. XML Code Editor

0.91

 - Software was still under development and not available

for download.

39

Product Graphical

XML

Editor

XSD

Validation

Availability

of U.S.

vendor

Remarks

42. XML Copy Editor

1.2

 - A text-based XML editor.

43. XML Editor 1.0.1 - Could not load the sample configuration vector for

editing in the table view.

44. XML Editor Tool

6

 - Did not automatically validate the XML configuration

vector when it was saved.

45. XML Explorer

4.01

 - An XML viewer.

46. XML Manager

1.0

 - Only a German version of the software was available.

47. XML Notepad

2007

 - 1. Tree view

2. Provided XSD validation on-the-fly.

48. XML Visualiser 2 - Did not automatically validate the XML configuration

vector when it was saved.

49. XML Webpad 1.0 - Web-based framework in C# for creating custom editors.

40

Product Graphical

XML

Editor

XSD

Validation

Availability

of U.S.

vendor

Remarks

50. XMLBlueprint

XML Editor 7.5

 1. No U.S. contact listed on Web site.

2. Did not automatically validate the XML configuration

vector when it was saved.

51. XMLmind XML

Editor 4.6

 1. No U.S. contact listed on Web site.

2. Did not validate the sample configuration vector

correctly – software reported XSD “cannot derive

simpleType by restriction: minInclusive facet and

maxExclusive facet are both specified.”

52. XMLSpear 3.10 - 1. Tree view

2. Provided XSD validation on-the-fly.

53. XMLspark 0.5b - A text-based XML editor.

54. XMLwriter 2.7 1. No U.S. contact listed on Web site.

2. Did not automatically validate the XML configuration

vector when it was saved.

41

Product Graphical

XML

Editor

XSD

Validation

Availability

of U.S.

vendor

Remarks

55. XNGR XML

Browser 2.0 beta

 - 1. A text-based XML editor.

2. Did not validate the sample configuration vector

correctly.

56. Xopus 4.1.6 No

information

 1. No U.S. contact listed on Web site.

2. Did not work without developing the XSLT style

sheets and programming javascripts. Therefore, was

unable to study them properly and get them to work with

the sample configuration vector. Thus, it was eliminated

from further consideration.

57. xsl:easy 4.0 1. No U.S. contact listed on Web site.

2. Tree view.

3. Could not validate the keys and keyrefs defined in the

configuration vector XML Schema.

58. Ymacs - A text-based code editor.

42

Table 2. Additional information on the XML editors evaluated (This information is accurate as of September 2010)

Product OS platform

support

Type Pricing

(USD)

Open

source

License

type

Company HQ /

Product Web site

1. AjRa XML

Editor 1.0

Windows Standalone - Yes GNU GPL http://sourceforge.net/projects/

ajraxmleditor/

2. Altova

XMLSpy 2010

Windows Standalone $499.00

per license

(Profession

al Edition).

$623.75

with 1 year

support.

Volume

discounts

available.

No Proprietary Altova - Austria

http://www.altova.com

43

Product OS platform

support

Type Pricing

(USD)

Open

source

License

type

Company HQ /

Product Web site

3. Amaya 11 Windows,

Unix, Mac

OS X

(browser)

Standalone - Yes W3C http://www.w3.org/Amaya/

4. Angur XML

Visualizer

1.01

Windows Standalone - No GNU GPL http://sourceforge.net/projects/

angur/

5. Barium Visual

XSL

Transformer

1.5

Windows Standalone - No Freeware http://www.dunnsolutions.co.u

k/products/visualxsltransforme

r/barium.html

6. Beacon Editor No

information

Standalone - No

informatio

n

GNU GPL http://beaconeditor.org

7. CEDIT XML Java-based

platforms

Standalone - Yes No

informatio

n

http://sourceforge.net/projects/

ceditxml/

44

Product OS platform

support

Type Pricing

(USD)

Open

source

License

type

Company HQ /

Product Web site

8. Civ4 Mod

Editor

Windows Standalone - No No

informatio

n

http://sourceforge.net/projects/

c4me/

9. Cladonia

Exchanger

XML Editor

3.3

Windows,

Mac OS X,

Linux/Unix

Standalone No price

listed on

Web site.

No Proprietary Cladonia - Ireland

http://www.exchangerxml.com

http://code.google.com/p/exch

angerxml

10. codefunk

XML Editor 1

Windows Standalone - No No

informatio

n

http://sourceforge.net/projects/

codefunkxmledit/

11. Dataset Editor

0.1

Windows,

Linux

Standalone - No GNU GPL http://sourceforge.net/projects/

dataseteditor/

45

Product OS platform

support

Type Pricing

(USD)

Open

source

License

type

Company HQ /

Product Web site

12. Debugging

XSLT

stylesheets

using the

Saxon

processor 1.0

Multi-

platform

Eclipse

plug-in

- Yes GNU GPL http://marketplace.eclipse.org/

content/debugging-xslt-

stylesheets-using-saxon-

processor

13. Dexter-XSL

0.3

Java-based

platforms

Standalone - Yes Artistic

License /

GPL

http://code.google.com/p/dexte

r-xsl/

14. Easy XML

Editor 1.6

Windows Standalone €20 per

license

Volume

discounts

available

No Proprietary Richard Würflein Software

Development -Germany

http://www-edit-xml.com

46

Product OS platform

support

Type Pricing

(USD)

Open

source

License

type

Company HQ /

Product Web site

15. EditiX 2010 Windows,

Mac OS X,

Linux

Standalone $119 per

license

$149 with

1 year

support.

No Proprietary JAPIsoft - Europe

http://www.editix.com

16. epcEdit 1.2 Windows,

Linux,

Solaris

Standalone - No Freeware http://www.epcedit.com

17. ExtJS 3.0 Multi-

platform,

Web-based

Standalone - Yes GNU GPL http://code.google.com/p/extjs

-xmleditor/

18. EzXML

Desktop 1.0

Multi-

platform

Eclipse

plug-in

- No

informatio

n

EPL http://marketplace.eclipse.org/

content/ezxml-desktop

47

Product OS platform

support

Type Pricing

(USD)

Open

source

License

type

Company HQ /

Product Web site

19. Java XML

XPath Eclipse

Templates 1.5

Multi-

platform

- - Yes GPL http://marketplace.eclipse.org/

content/java-xml-xpath-

eclipse-templates

20. JCAM Engine

with XML

Editor /

Validator

Multi-

platform

Standalone - Yes OSL http://sourceforge.net/projects/

camprocessor

21. Jedit Editor

4.3

Java-based

platforms

Standalone - Yes GNU GPL http://www.jedit.org

22. JSimplex 3.1 Windows,

Mac OS,

Linux

Standalone - Yes GNU GPL http://sourceforge.net/projects/

jsimplex

48

Product OS platform

support

Type Pricing

(USD)

Open

source

License

type

Company HQ /

Product Web site

23. Liquid XML

Studio 2010

Windows Standalone $320.56

per license

(Designer

Edition).

$384.68

with 1 year

support.

Volume

discounts

available.

No Proprietary Liquid Technologies –U.K.

 http://www.liquid-

technologies.com

24. MoreMotion

Application

Studio 5

Windows Standalone Free for

non-

commercia

l use.

No price

listed on

Web site.

No Proprietary Mor Yazilim Ltd - Turkey

http://www.moremotion.com

49

Product OS platform

support

Type Pricing

(USD)

Open

source

License

type

Company HQ /

Product Web site

25. Notepad++

with XML

Tools 2.3

Windows Plug-in to

Notepad++

- Yes GNU GPL http://sourceforge.net/apps/me

diawiki/notepad-

plus/index.php?title=Plugin_C

entral

26. Open XML

Editor 1.6

Windows Standalone - Yes MPL /

GPL

http://www.philo.de/xmledit/

27. <oXygen/>

XML Editor

12.0

Windows,

Mac OS X,

Linux/Unix

Standalone $349 per

license

(Profession

al Edition).

$422 with

1 year

support.

Volume

discounts

available.

No Proprietary Syncro Soft - Romania

http://www.oxygenxml.com

50

Product OS platform

support

Type Pricing

(USD)

Open

source

License

type

Company HQ /

Product Web site

28. PTC Arbortext

Editor 5.4

No

information

Standalone No

informatio

n

No Proprietary PTC - U.S.

http://www.ptc.com/products/a

rbortext/

29. Quark XML

Author 3.0

Windows Plugin to

Microsoft

Word

No

informatio

n

No Proprietary Quark – U.S.

http://dynamicpublishing.quar

k.com/xml_author

30. Qxmledit 0.4.9 Windows,

Ubuntu

Standalone - Yes GNU GPL http://code.google.com/p/qxml

edit/

31. Rinzo XML

Editor 0.8

Multi-

platform

Eclipse

plug-in

LGPL No No

informatio

n

http://marketplace.eclipse.org/

content/rinzo-xml-editor

32. STDU XML

Editor 1.0

Windows Standalone $9.95 No Proprietary STDUtility

http://www.stdutility.com/stdu

-xml-editor.html

51

Product OS platform

support

Type Pricing

(USD)

Open

source

License

type

Company HQ /

Product Web site

33. Stylus Studio

2010

Windows Standalone $450

(Profession

al edition)

No Proprietary Progress Software Corporation

- U.S.

http://www.stylusstudio.com

34. Syntext Serna

XML Editor 4

Windows,

Linux, Mac

OS X, Sun

Solaris /

SPARC

Standalone Free and

open-

source

(Home

edition)

$948 per

license

with 1 year

support.

(Enterprise

edition)

Volume

discounts

available.

No Proprietary Syntext Inc - U.S.

http://www.syntext.com

52

Product OS platform

support

Type Pricing

(USD)

Open

source

License

type

Company HQ /

Product Web site

35. Veloeclipse

2.07

Multi-

platform

Eclipse

Plug-in

- Yes Free GPL http://marketplace.eclipse.org/

content/veloeclipse

36. VEX 0.5 alpha Multi-

platform

Eclipse

Plug-in

- Yes EPL http://marketplace.eclipse.org/

content/veloeclipse

37. Xacobeo 0.13 Multi-

platform

Standalone - Yes Artistic

License /

GPL

http://code.google.com/p/xaco

beo

38. Xcarecrows 4

XML 1.3.8

Multi-

platform

Eclipse

Plug-in

- Yes Apache

License /

EPL

http://marketplace.eclipse.org/

content/xcarecrows-4-xml

39. XMetaL

Author

Enterprise 6.0

Windows Standalone No

informatio

n

No Proprietary JustSystems - Japan

http://na.justsystems.com

53

Product OS platform

support

Type Pricing

(USD)

Open

source

License

type

Company HQ /

Product Web site

40. XML

Assistant 1.2

Windows Standalone €20 per

license

Volume

discounts

available

No Proprietary Richard Würflein Software

Development -Germany

http://www-edit-xml.com

41. XML Code

Editor 0.91

alpha

Windows Microsoft

Silverlight

- Yes MIT

License

http://xmlcodeeditor.codeplex.

com/releases/view/45990

42. XML Copy

Editor 1.2

Windows,

Linux

Standalone - Yes GNU GPL http://xml-copy-

editor.sourceforge.net/

43. XML Editor

1.0.1

Windows Standalone - No Freeware http://www.asaapplications.co

m/asa/

44. XML Editor

Tool 6

Windows Standalone - No Freeware http://sourceforge.net/projects/

xmleditortool/

45. XML Explorer

4.01

Windows Standalone - No GNU GPL http://xmlexplorer.codeplex.co

m

54

Product OS platform

support

Type Pricing

(USD)

Open

source

License

type

Company HQ /

Product Web site

46. XML Manager

1.0

Windows Standalone - No GNU GPL http://code.google.com/p/xml

manager/

47. XML

Visualiser 2

Windows Standalone

/ Visual

Studio

Plug-in

- No CDDL http://xmlvisualizer.codeplex.c

om

48. XML Notepad

2007

Windows Standalone - No Proprietary Microsoft - U.S.

http://www.microsoft.com

49. XML Webpad

1.0

Multi-

platform,

Web-based

C#

framework

- No MIT

License

http://xmlwebpad.codeplex.co

m

50. XMLBlueprint

XML Editor

7.5

Windows Standalone $45 per

license.

Volume

discounts

available.

No Proprietary Monkfish XML Software –

The Netherlands

http://www.xmlblueprint.com/

55

Product OS platform

support

Type Pricing

(USD)

Open

source

License

type

Company HQ /

Product Web site

51. XMLmind

XML Editor

4.6

Windows,

Mac OS X,

Linux

Standalone Free

(Personal

Edition)

$300 per

license.

Volume

discounts

available.

No Proprietary Pixware - France

http://www.xmlmind.com

52. XMLSpear

3.10

Windows,

Linux, Mac

OS

Standalone

/ Java web

start

- No Freeware http://www.donkeydevelopme

nt.com/#downloads

53. XMLspark

0.5b

Java-based

platforms

Standalone - Yes No

informatio

n

http://sourceforge.net/projects/

xmlvisualizer

56

Product OS platform

support

Type Pricing

(USD)

Open

source

License

type

Company HQ /

Product Web site

54. XMLwriter

2.7

Windows Standalone AUD139

Volume

discounts

available.

No Proprietary Wattle Software - Australia

http://xmlwriter.net

55. XNGR XML

Browser

No

information

Standalone - Yes Mozilla

Public

License

(MPL)

http://xngr.org

56. Xopus 4.1.6 Windows,

Mac OS X,

Linux

Standalone

Web-based

€180 per

license

Volume

discounts

available.

No Proprietary SDL - The Netherlands

http://xopus.com

57. xsl:easy 4.0 Windows Standalone

/ Eclipse

Plug-in

€298 No Proprietary SoftProject - Germany

http://www.xsl-easy.com

57

Product OS platform

support

Type Pricing

(USD)

Open

source

License

type

Company HQ /

Product Web site

58. Ymacs Multi-

platform,

Web-based

Standalone - Yes BSD http://www.ymacs.org/

Figure 4. This display of the sample LPSK configuration vector using the Angur XML Visualizer illustrates its poor
visualization quality

58

C. FEATURES COMPARISON

A good user interface helps to reduce the time needed to construct a configuration

and to eliminate unnecessary human errors. Instead of assessing factors such as

learnability and memorability of the software which are difficult to measure, GUI

features that are considered to be useful for users to perform their task were identified.

They were used to compare the seven (7) XML editors that were still in contention.

1. Nested Grid View

Visualizing the relationships between elements of the configuration vector is

essential to the GUI. The previous version of the LPSK Configuration Vector tool

adopted a tabbed interface to visualize partitions, processes, synchronization primitives

and resources [7]. A nested grid view is another way to present the data. Figure 5 is an

illustration of a nested grid view. The advantages of using a nested grid view are that the

data is collated in a single view, and relationships between partitions, processes, subjects

and subject-to-resource permissions are made explicit. It also allows the repetitive XML

content (e.g., subjects and permissions) to be edited in a table-like fashion, similar to a

spreadsheet application.

2. Source-Code View

Most graphical-based XML editors can show the source code for changes best

made while looking at the XML source. This is very useful for users who are experienced

with authoring XML. The editor should also color-code the syntax, so that it is easy for

users to distinguish the code from the content. They should also include a tree view. This

provides a hierarchical view of the document, which expands and collapses elements so

that the user can focus only on the elements that need to be edited, making it easy to

manage large configuration vectors.

3. Auto-Completion

Based on the associated XML Schema and location in the XML document, a list

of possible elements (XML tags), attributes, or attribute values is shown whenever the

59

user types an XML tag while in text mode, or creates a new row while in graphical mode.

If the field has a pre-defined list of values defined by the schema enumeration constraint,

a list of valid values is displayed. This is useful as a way of encouraging the correct

structure and content, thus minimizing errors.

4. Embedded XML Schema Editor

An XML Schema editor is required to edit the configuration vector XML Schema.

The advantage of using a schema editor is that it can be used to check that the

configuration vector XML Schema is well formed and valid according to the W3C

standards.

5. Error Handling

The requirement of error handling is to prompt the user if an error exists in the

configuration vector. The editor should assist the user by directing him to the location in

the configuration vector where the error occurs. This improves usability by making

debugging and error recovery easier for users.

D. FINAL EVALUATION OUTCOME

Table 3 compares the editors based on their implementation of the features

described above. The number of suitable editors was narrowed down from seven (7) to

four (4) after reviewing their feature set. The finalists were XMLSpy, Stylus Studio,

Liquid XML Studio and <oXygen/> XML Editor.

60

Table 3. Comparison of the XML editors by features (This information is accurate as of September 2010)

Product

Nested

grid

view

Source

code view

Auto-

completio

n

Embedde

d XML

Schema

Editor

Error

handling

Remarks

1. Altova XMLSpy

2010

2. Liquid XML

Studio 2010

Unable to highlight or direct user

to the exact element that cause

the error for referential

constraints.

3. <oXygen/> XML

Editor 12.0

Unable to highlight or direct user

to the exact element that cause

the error for referential

constraints.

4. Qxmledit 0.4.9 Tree view

61

Product

Nested

grid

view

Source

code view

Auto-

completio

n

Embedde

d XML

Schema

Editor

Error

handling

Remarks

5. Stylus Studio

2010

1. Did not provide users with a

list of valid values for fields

limited to a set of acceptable

values (enumeration constraint).

2. Did not highlight the element

that caused the error.

6. XML Notepad

2007

 Tree view

7. XMLSpear 3.10 Tree view

62

XMLSpy was the most expensive of the four remaining products. However, the

error handling features in XMLSpy were superior compared to the other products. It

highlighted the exact location of XML validation errors, while the mouse cursor was on

another arbitrary location in the XML document. Efficiency is enhanced with XMLSpy

since users do not have to spend time figuring out which content caused the error. In

contrast, the other editors led the users the parent XML element where the defined

constraint was violated, without pinpointing the exact child element that triggered the

error. This kind of error can be hard to locate, especially if the parent element contains

many child elements. This is illustrated by an example in Figures 5 to 8. In the LPSK

configuration vector XML Schema, it is required that the partition that receives focus

when the secure attention key (SAK) is invoked be an existing partition. This is defined

by specifying a key on partitions partition_pk and a key reference sak_fk that references

partition_pk, as shown in the code snippet in Figure 9. An error is flagged if sak_fd

contains a partition ID that is not defined by the configuration vector. Since the constraint

is defined inside the element vector, the editors only reported that a constraint had been

violated in the context of element vector. This also applies to all other referential

constraints in the XML Schema.

In conclusion, XMLSpy meets all the requirements for the GUI of the LPSK

Configuration Vector Tool, and is recommended for use.

63

Figure 5. Error handling in Altova XMLSpy, which also illustrates a nested grid view.

(The error message indicates that the error location is at vector/partitions/sak_id; the error is also highlighted.)

64

Figure 6. Error handling in Liquid XML Studio.

(The error message indicates “the key sequence in Keyref fails to refer to some key”, which is not intuitive.)

65

Figure 7. Error handling in <oXygen/> XML Editor.

(The error message indicates the “sak_fk” constraint is violated for the identity constraint of element “vector.”)

66

Figure 8. Error handling in Stylus Studio.

(The error message indicates the identity constraint key for element ‘vector’ is not found, which is not intuitive.)

67

Figure 9. Code snippet of the SAK partition constraint, defined in the context of a
configuration vector.

E. SUMMARY

This chapter outlined the selection process for suitable XML editors available on

the market for the LPSK Configuration Vector Tool. Altova XMLSpy was found to be

the most suitable software that meets the requirements for the GUI. The next chapter

describes the design and implementation of the LPSK Configuration Vector XML

Schema and the other components of the LPSK Configuration Vector Tool.

68

THIS PAGE INTENTIONALLY LEFT BLANK

69

V. DESIGN AND IMPLEMENTATION

The LPSK Configuration Vector Tool is conceived to be a suite of utilities to

support the creation of LPSK configuration vectors. The previous chapter discussed the

selection of a GUI-based editor to facilitate the editing of XML-based configuration

vectors. This chapter describes the design considerations and implementation of other

components in the tool.

A. CONFIGURATION VECTOR FORMAT

This section describes the design and implementation of the LPSK Configuration

Vector XML and binary formats.

1. XML Representation

The benefits of defining a XML Schema for the LPSK Configuration Vector were

discussed in Chapter II. XML Schema Definition Language (XSD) 1.0 [10] was used to

implement the schema. XSD 1.0 has excellent tool support. The rationale for choosing

XSD over Document Type Definition (DTD) is that it has a richer grammar that allows

precise definition of the number of occurrences of elements, provides a way to describe

the relationship between elements, and contains a large number of data types for

describing elements.

User-defined data types were extensively used to restrict the values of some fields

to their acceptable values or ranges. The configuration vector XML Schema user-defined

data types are summarized in Table 4. It also facilitates re-use in other elements. For

example, path_type is defined once, and re-used in several elements.

70

Table 4. User-defined data types defined in the LPSK Configuration Vector XML
Schema

User-defined Data Types Description Definition / Valid

values

action_type The set of actions the LPSK

can take when the audit buffer

is full.

overwrite,

halt,

shutdown

bool_type The Boolean data type. 0 or 1

buf_type The data type for the audit

buffer size in bytes.

An integer between 1

and 65535.

data_or_control_type The set of values for device

types.

data, control

delay_type The data type for the delay in

seconds before LPSK shuts

down when the audit buffer is

full.

An integer between 0

and 60.

desc_type The data type for description

field.

A string of length

between 0 and 32

characters.

device_attr_type The set of device attributes. dedicated, multiplexed

device_event_type The set of events to audit for

devices.

read data,

 write data,

 read metadata,

write metadata

71

User-defined Data Types Description Definition / Valid

values

dseg_event_type The set of events to audit for

data segments.

swapin, flush, swapout

event_type The set of audit event status. success, failure, both

eventcounts_event_type The set of events to audit for

eventcounts.

advance, read, await,

wakeup

kb_buf_size_type The data type for the keyboard

incoming scan code buffer

size.

An integer between 32

and 1024.

lpskmsg_type The set of LPSK message

types.

Status, Partition with

focus,

Both

mac_addr_type The data type for the network

device MAC address.

A string with format

XX:XX:XX:XX:XX:X

X, where X is a

hexadecimal digit

between 0x0 and 0xF.

mandatory_path_type The data type for a mandatory

path.

A string of length

between 1 and 64

characters.

mseg_event_type The set of events to audit for

memory segments.

created

network_buf_size_type The data type for each

network device’s incoming

and outgoing buffer size.

An integer between 32

and 256.

72

User-defined Data Types Description Definition / Valid

values

network_read_type The network device read

behavior.

promiscuous,

non-promiscuous

network_state_type The set of network device

states.

started, stopped

nillable_part_id_type The range of values that valid

partition identifiers can take.

Null values are allowed.

An integer between 0

and 256 or an empty

string.

part_id_type The range of values that valid

partition identifiers can take.

An integer between 0

and 256.

path_type The data type for a path. Null

values are allowed.

A string of length

between 0 and 64

characters.

percent_type The range of values for

percentages.

A numerical value

between 0 and 100.

perm_type A set of permissions. NA, RO, RW, WO

pl_type The range of values for

privilege levels.

An integer between 0

and 3.

positive_percent_type The range of values for

percentage greater than 0.

A numerical value

greater than 0, and up to

a maximum of 100.

proc_id_type The range of values that

process identifiers can take.

An integer between 0

and 511.

ro_perm_type A set of permissions. NA, RO

73

User-defined Data Types Description Definition / Valid

values

rw_perm_type A set of permissions. NA, RW

screen_line_type Data type for the number of

video character lines.

An integer with

minimum value 1.

sequencers_event_type The set of events to audit for

sequencers.

ticket

start_state_event_type The set of start states for data

segments.

swapin, swapout

subj_event_type The set of events to audit for

subjects.

interrupt, received

signal,

send signal, read device,

write device,

read eventcount,

advance eventcount,

wait eventcount,

wakeup eventcount,

ticket sequencer

sync_id_type The range of values that

eventcount identifiers and

sequencer identifiers can take.

An integer between 0

and 63.

The LPSK configuration vector XML Schema is illustrated in Figures 10 to 14,

where vector is the root element.

74

Figure 10. XML Schema with header, audit_buf (audit buffer configuration), runtime and partitions details.

75

Figure 11. XML Schema with policy, dseg (data segment) and mseg (memory segment) details.

76

Figure 12. XML Schema with eventcount and sequencer details.

77

Figure 13. XML Schema with device details.

78

Figure 14. XML Schema with process, subject and subj_res_perms (subject-to-resource permission) details

79

The LPSK XML Schema uses keys and key references (keyref) in XSD 1.0 to

define referential constraints between elements in the XML configuration vector, as

shown in Table 5. This is similar to the primary-key and foreign-key feature available in

relational database systems. These are used by the Configuration Vector Tool to check

and maintain the referential integrity of partitions, subjects and resources in a

configuration vector.

Table 5. Referential constraints defined in the LPSK XML Schema

key Name keyref Name Description

partition_pk ptp_subj_part_id_fk The subject partition in a PTP

policy is defined in partitions.

 ptp_res_part_id_fk The resource partition in a PTP

policy is defined in partitions.

 pas_subj_part_id_fk The subject partition in a PAS

policy is defined in partitions.

 pas_res_part_id_fk The resource partition in a PAS

policy is defined in partitions.

 dseg_partition_fk The home partition of a data

segment is defined in partitions.

 mseg_partition_fk The home partition of a memory

segment is defined in partitions.

 eventcount_partition_fk The home partition of an

eventcount is defined in partitions.

 sequencer_partition_fk The home partition of a sequencer

is defined in partitions.

80

key Name keyref Name Description

 device_partition_fk The home partition of a device is

defined in partitions.

 device_initpartition_fk The partition of a dedicated device

with initial access is defined in

partitions.

 process_partition_fk The home partition of a process is

defined in partitions.

eventcount_pk subj_eventcount_fk The eventcount a subject is

allowed to access is defined in

eventcounts.

sequencer_pk subj_sequencer_fk The sequencer a subject is allowed

to access (subject-to-resource

permissions) is defined in

sequencers.

dseg_pk subj_dseg_fk The data segment a subject is

allowed to access (subject-to-

resource permissions) is defined in

dsegs.

mseg_pk subj_mseg_fk The memory segment a subject is

allowed to access (subject-to-

resource permissions) is defined in

msegs.

device_pk subj_device_fk The device a subject is allowed to

access (subject-to-resource

permissions) is defined in devices.

81

Uniqueness constraints are defined to enforce uniqueness of a value or

combinations of values in an element, as shown in Table 6. With respect to subjects-to-

resource permissions, the constraints prevent multiple declarations of the same resource

for a given subject, but allow the same resource to be accessed by multiple subjects.

Table 6. Uniqueness constraints defined in the LPSK XML Schema

Unique Name Description

ptp_unique The combination of subject partition (subj_part_id) and

resource partition (res_part_id) is unique across PTP

policies.

pas_unique The combination of subject partition (subj_part_id) and

resource partition (res_part_id) is unique across PAS

policies.

subj_unique The privilege level (pl) of a subject is unique across

subjects in a process.

subj_eventcount_unique

The eventcount a subject is allowed to access (subject-to-

resource permissions) is unique within that subject.

subj_sequencer_unique The sequencer a subject is allowed to access (subject-to-

resource permissions) is unique within that subject.

subj_dseg_unique The data segment a subject is allowed to access (subject-

to-resource permissions) is unique within that subject.

subj_mseg_unique The memory segment a subject is allowed to access

(subject-to-resource permissions) is unique within that

subject.

subj_device_unique

The device a subject is allowed to access (subject-to-

resource permissions) is unique within that subject.

82

Unique Name Description

subj_subj_unique The subject another subject is allowed to access (subject-

to-resource permissions) is unique within that subject.

XSD 1.0 is unable to express some of the validation rules (constraints) required

by the LPSK Configuration Vector Tool; additional Java code was written to enforce

these rules.

 The total CPU time allocated to all partitions must be exactly 100%.

 A process must belong to an active partition.

 The secure attention key (SAK) partition must be defined when a

keyboard device is configured, and it must be an active partition; it cannot

be defined when no keyboard device is configured.

 The partition that receives initial KVM focus must be defined when a

screen device is configured, and it must be an active partition; it cannot be

defined in terms of KVM when no screen device is configured.

 A process must be allocated more than 0% of the CPU time slice.

 The total time slices allocated to all processes in a given partition must be

equal to 100% of the CPU time slices allocated to that partition.

2. Binary Representation

The binary representation of the LPSK configuration closely follows the structure

of the XML representation, in terms of the ordering of the fields. To support dynamic re-

sizing of the file, additional fields are introduced as follows. This allows the

configuration tool to determine how many records of each type would follow while it is

parsing the binary data.

 Number of reserved memory regions in the Run-time LPSK

 Number of partitions

 Number of PTP policies

83

 Number of PAS policies

 Number of data segments, and number of audit events for each segment

 Number of memory segments, and number of audit events for each
segment

 Number of eventcounts, and number of audit events for each eventcount

 Number of sequencers, and number of audit events for each sequencer

 Number of devices, and number of audit events for each type

 Number of processes

 Number of subjects in each process

 Number of subject-to-resource permissions for each subject

 Number of audit events for each subject

For enumerated fields, the values were encoded as integers as shown in Figure 15

for efficiency reasons.

84

/* Actions to take when audit is full. Used by audit_buf_struct.action_full. */
#define OVERWRITE 0 // Overwrite
#define HALT 1 // Halt the platform
#define SHUTDOWN 2 // Shutdown the platform

/* Types of messages to display. Used by runtime_struct.msg_type. */
#define STATUS 0 // Status
#define PART_FOCUS 1 // Partition with focus
#define BOTH_MSG 2 // Both

/* Permissions and Policies access modes. Used by policy_struct.mode. */
#define NA 0 // No Access
#define RO 1 // Read only
#define RW 2 // Read and Write
#define WO 3 // Write only

/* Audit events. Used by audit_struct */
/* Dsegs */
#define DS_SWAPIN 0
#define DS_FLUSH 1
#define DS_SWAPOUT 2
/* Msegs */
#define CREATED 3
/* Eventcounts */
#define ADVANCE 4
#define READ 5
#define AWAIT 6
#define WAKEUP 7
/* Sequencers */
#define TICKET 8
/* Devices */
#define READ_DATA 9
#define WRITE_DATA 10
#define READ_META 11 // read metadata
#define WRITE_META 12 // write metadata
/* Subjects */
#define INTERRUPT 13 // interrupt
#define RCV_SIGNAL 14 // received signal
#define SND_SIGNAL 15 // send signal
#define READ_DEV 16 // read device
#define WRITE_DEV 17 // write device
#define READ_EVCT 18 // read eventcount
#define ADV_EVCT 19 // advance eventcount
#define WAIT_EVCT 20 // wait on eventcount
#define WAKE_EVCT 21 // wakeup on eventcount
#define TICKET_SEQ 22 // ticket sequencer
/* Audit success, failure or both */
#define SUCCESS 23 // success
#define FAILURE 24 // failure
#define BOTH 25 // both

/* Start state. Used by desg_struct.start_state. */
#define SWAPIN_STATE 0
#define SWAPOUT_STATE 1
/* Device data or control type. Used by device_struct.type. */
#define DATA 0
#define CONTROL 1
/* Device attribute. Used by device_struct.attribute. */
#define MULTIPLEXED 0
#define DEDICATED 1
/* Network device initial state */
#define STARTED 0
#define STOPPED 1
/* Network device read */
#define PROMISC 0 // promiscuous mode
#define NON_PROMISC 1 // non-promiscuous mode

Figure 15. Binary representation of values of enumerated fields

85

All Boolean and numerical fields are assigned the int data type, although some

fields require only byte or short representations. The rationale for doing so was to avoid

the byte alignment issue when using mixed content types in C struct, as the configuration

vector is processed in the LPSK using C.

Since different device categories have different fields, each device declaration in

the binary had to be pre-pended with an integer to indicate the type of device that

follows, where 0 indicates a keyboard device, 1 indicates a network device, and 2

indicates a PL1 message device or screen device.

In addition, a set of interfaces was implemented to facilitate the traversing of

binary configuration vectors by the LPSK, as shown in Table 7. This provides a

consistent interface for different programs in the LPSK to access different portions of a

configuration vector, and minimizes the impact of future changes to the configuration

vector format.

Table 7. Interfaces provided to the LPSK for traversing configuration vectors

Interface Description

void* get_header(void* ptr) Takes a reference to the configuration vector in

memory and returns a pointer to the start of

header.

void* get_audit_buf(void* ptr) Takes a reference to the configuration vector in

memory and returns a pointer to the start of

audit buffer configuration.

void* get_runtime(void* ptr) Takes a reference to the configuration vector in

memory and returns a pointer to the start of

runtime.

void* get_partitions(void*

ptr)

Takes a reference to the configuration vector in

memory and returns a pointer to the start of

partitions.

86

Interface Description

void* get_policies(void* ptr) Takes a reference to the configuration vector in

memory and returns a pointer to the start of

policies.

void* get_dsegs(void* ptr) Takes a reference to the configuration vector in

memory and returns a pointer to the start of

dsegs.

void* get_msegs(void *ptr) Takes a reference to the configuration vector in

memory and returns a pointer to the start of

msegs.

void* get_eventcounts(void

*ptr)

Takes a reference to the configuration vector in

memory and returns a pointer to the start of

eventcounts.

void* get_sequencers(void

*ptr)

Takes a reference to the configuration vector in

memory and returns a pointer to the start of

sequencers.

void* get_devices(void *ptr) Takes a reference to the configuration vector in

memory and returns a pointer to the start of

devices.

void* get_processes(void *ptr) Takes a reference to the configuration vector in

memory and returns a pointer to the start of

processes.

void* get_subjects(void *ptr) Takes a reference to the configuration vector in

memory and returns a pointer to the start of

subjects.

87

B. CONFIGURATION VECTOR TOOL UTILITIES

1. Format Conversion

A command-line format conversion utility was developed for conversion of

configuration vectors from its XML form into its binary form, and vice-versa. The syntax

of the utility is shown in Figure 16.

java -jar vector.jar -bin|-xml|-h [input file] [output file] [schema
file]

Options:

-bin Converts input to binary format.

-xml Converts input to XML format.

-h Displays help.

Parameters:

input file The input file name.

output file The output file name.

schema file The XML Schema file name.

Figure 16. Format conversion command-line interface

A set of Java classes was developed to manage the conversion of different

elements within a configuration vector, as shown in Table 8. The rationale for choosing

Java is that the code can run on a wide variety of commodity operating systems. There is

also a set of readily available Java-based libraries for parsing and validating XML

documents.

88

Table 8. Java classes of the format conversion utility

Java Class Name Description

AuditBuffer Implements the conversion of the audit buffer portion of a

configuration vector from XML format to binary format,

and vice versa.

Audits Implements the conversion of audit events portion of a

configuration vector from XML format to binary format,

and vice versa.

Devices Implements the conversion of devices portion of a

configuration vector from XML format to binary format,

and vice versa.

Dsegs Implements the conversion of data segments portion of a

configuration vector from XML format to binary format,

and vice versa.

Eventcounts Implements the conversion of eventcounts portion of a

configuration vector from XML format to binary format,

and vice versa.

Header Implements the conversion of version, magic number and

description portion of a configuration vector from XML

format to binary format, and vice versa.

Msegs Implements the conversion of memory segments portion of

a configuration vector from XML format to binary format,

and vice versa.

Partitions Implements the conversion of partitions portion of a

configuration vector from XML format to binary format,

and vice versa.

89

Java Class Name Description

Policies Implements the conversion of policies (PTP and PAS)

portion of a configuration vector from XML format to

binary format, and vice versa.

Processes Implements the conversion of processes portion of a

configuration vector from XML format to binary format,

and vice versa.

ReservedMemory Implements the conversion of run-time reserved memory

portion of a configuration vector from XML format to

binary format, and vice versa.

Runtime Implements the conversion of run-time LPSK portion of a

configuration vector from XML format to binary format,

and vice versa.

SAXValidation Validates the input XML file against the given XML

schema, and performs additional consistency checks not

covered by the rules in the XML Schema.

Sequencers Implements the conversion of sequencers portion of a

configuration vector from XML format to binary format,

and vice versa.

Subjects Implements the conversion of subject portion of a

configuration vector from XML format to binary format,

and vice versa.

SubjectToDevices Implements the conversion of subject-to-devices

permissions portion of a configuration vector from XML

format to binary format, and vice versa.

90

Java Class Name Description

SubjectToDsegs Implements the conversion of subject-to-data segments

permissions portion of a configuration vector from XML

format to binary format, and vice versa.

SubjectToEventcounts Implements the conversion of subject-to-eventcounts

permissions portion of a configuration vector from XML

format to binary format, and vice versa.

SubjectToMsegs Implements the conversion of subject-to-memory segments

permissions portion of a configuration vector from XML

format to binary format, and vice versa.

SubjectToSequencers Implements the conversion of subject-to-sequencers

permissions portion of a configuration vector from XML

format to binary format, and vice versa.

SubjectToSubjects Implements the conversion of subject-to-subjects

permissions portion of a configuration vector from XML

format to binary format, and vice versa.

Utils Implements a set of utility functions that handles format

conversion between XML and binary.

91

Java Class Name Description

Vector The main class that accepts the input file name, output file

name and XML Schema file name, and converts a

configuration vector from XML format to binary format,

and vice versa.

Before converting from XML to binary format, it first

checks the XML against the XML Schema. If the XML is

not valid, the program displays an error message and exits.

After converting from binary to XML format, it first

checks the XML against the XML Schema. If the XML is

not valid, the program displays an error message and exits.

The output file is not saved.

The dependencies between the classes described in Table 8 are illustrated in Figure 17.

92

Figure 17. Dependencies between classes in the Format Conversion utility

93

2. Keyed-Hash Message Authentication Code Generation

The purpose of a message authentication code (MAC) is to verify that the

integrity of binary configuration vectors has not been compromised between when they

are generated and when they are verified. The MAC generation module receives as inputs

a binary configuration vector and a secret password to produce the MAC for the file. To

verify the integrity of the configuration vector at a later time, the MAC is recomputed

using the same password, and compared with the original MAC. If the two values match,

one can be assured that the configuration vector has not been modified.

The ability to generate a HMAC is implemented as a command-line utility,

separated from the format conversion utility. A sample interaction with the HMAC utility

is shown in Figure 18. The main rationale for providing this feature with a separate tool

was to allow it to be readily replaced without an impact to other tools. Doing so also

allowed the same utility to be used to hash other LPSK components and files. The

cryptographic algorithm used is the SHA-256 algorithm from the Java Cryptography

Extension library in Java Platform, Standard Edition 6 [18]. The cryptographic strength

of the HMAC largely depends upon the size of the secret key used; a good password

should be chosen when generating the HMAC. Otherwise, it makes it easier for an

attacker to exploit collisions in the MAC.

Enter the key: This is the user password

Enter the file you want to create the HMAC: testconfig.bin

Hash size = 32

6347958ffffffc1ffffffabffffffb8ffffffd153ffffffaa5612ffffff9bffffffb5ff

fffff823fffffff3ffffffedfffffffa71263ffffffbdfffffff6ffffffad5bffffffb2

ffffffffffffffaa30703a

Figure 18. HMAC generation command-line interface.

94

C. SUMMARY

This chapter described design decisions and implementation of the XML Schema,

binary configuration vector, format conversion utility and HMAC utility for the LPSK

Configuration Vector Tool. The next chapter summarizes the tests conducted on this

implementation and the test results.

95

VI. TESTING

This chapter describes the test cases and test results for the implemented LPSK

Configuration Vector Tool. The tests were divided into three categories: functional tests,

boundary value tests and consistency checks. The functional tests are designed to verify

the functional correctness of the LPSK Configuration Vector Tool with respect to the

requirements specification. The boundary values test cases are designed based on

maximum and minimum values, typical values and erroneous values of the fields in the

LPSK Configuration Vector to verify correct implementation of data validity checks. The

consistency checks test cases serve to verify that the rules governing the relationships

between XML elements are correctly defined, so that the tool is able to ensure data

references in a configuration vector are coherent.

A. TEST CASES

1. Functional Tests

The objective of the following set of tests described in Table 9 is to verify that the

Configuration Vector Tool (command line) is able to convert an XML Configuration

Vector to its binary format and vice-versa, and contains appropriate error checks on the

input parameters.

96

Table 9. Functional Test Cases

Test

Purpose Test Description Expected Result

Format Conversion utility

C1. To verify that the

command line

Configuration Vector Tool

is able to convert an XML

Configuration Vector into

its binary format.

Run the Configuration

Vector Tool, specifying

the input XML

configuration vector,

output binary file and

Configuration Vector

Schema file.

A message is displayed

indicating that the XML

file is valid, and is

converted and saved to

the binary file.

C2. To verify that the tool is

able to handle invalid

input XML configuration

vectors.

(i) A non-existent XML

configuration vector is

supplied.

(ii) An invalid XML

configuration vector is

supplied.

(i) & (ii) An error

message is displayed

indicating that it failed

to read the XML file, the

tool halts processing and

no binary output file is

produced.

C3. To verify that the tool is

able to handle invalid

input XML Schema

(XSD) files.

(i) A non-existent

configuration vector XSD

is supplied.

(ii) An invalid

configuration vector XSD

is supplied.

(i) & (ii) An error

message is displayed

indicating that it failed

to read the XSD file, the

tool halts processing and

no binary output file is

produced.

97

Test

Purpose Test Description Expected Result

C4. To verify that the tool is

able to convert a binary

Configuration Vector into

its XML format.

An input binary

configuration vector,

output XML file and XSD

file is supplied.

A message is displayed

indicating that the binary

file is saved to the XML

file, and the XML file is

valid.

C5. To verify that the tool is

able to handle invalid

input binary configuration

vectors.

An invalid input binary

configuration vector is

supplied.

An error message is

displayed, the tool halts

processing and no binary

output file is produced.

C6. To verify that the binary

vector can be read by the

LPSK.

Load the binary vector

and boot up the kernel.

The LPSK boots up

according to the

configurations in the

binary vector.

 HMAC utility

C7. To verify the HMAC

utility is able to generate a

32-byte MAC based on a

password string and an

input file.

(i) A password and an

input filename are

supplied to the tool.

(ii) No password is

provided.

(iii) A non-existing

filename is supplied.

(i) A 32-byte MAC is

displayed.

(ii) An error message is

displayed indicating that

the password cannot be

empty.

(iii) An error message is

displayed indicating that

it failed to read the input

file.

98

Test

Purpose Test Description Expected Result

C8. To verify that the tool

generates the same MAC

only if the same password

and file is used.

(i) The same password

and filename are supplied.

(ii) The same filename is

supplied together with a

different password.

(iii) The same password is

supplied together with a

different filename.

(iv) A different password

and filename is supplied.

(i) The same 32-byte

MAC is displayed.

(ii) - (iv) A different 32-

byte MAC is displayed.

2. Boundary Value Tests

The objective of the following tests described in Table 10 is to ensure that the

Configuration Vector Tool checks that the CPU time slices are properly allocated to

partitions and processes, and the configurations of the audit buffer, runtime parameters,

partitions, subjects and resources are within specified limits. In several cases where a

field is constrained to a fixed set of values, only negative test cases are covered in this

section because the error messages from inputting invalid values also display the list of

valid values. For example, when “the action to take when buffer is full” field contains an

invalid value (e.g., “doshutdown”), the error message indicates “Value ‘doshutdown’ is

not valid with respect to enumeration ‘[overwrite, halt, shutdown]’, where “[overwrite,

halt, shutdown]” is the set of valid values. (Ref. Test C14).

99

Table 10. Boundary Value Test Cases

Test

Purpose Test Description Expected Result

C9. To ensure the total of

CPU time allocated to all

partitions is exactly

100%.

(i) The total time_slices

of all partitions is equal to

100%.

(ii) The total time_slices

of all partitions is less

than 100%.

(iii) The total time_slices

of all partitions exceeds

100%.

(i) No error message is

displayed.

(ii) & (iii) An error

message is displayed

indicating that the total

time slices must be equal

to 100%.

C10. To ensure that a process

is allocated a time slice

greater than 0%.

(i) The time_slice of a

process is set to 1%.

(ii) The time_slice of a

process is set to be less

than or equal to 0%.

(iii) The home partition of

the process is given a

time_slice of 0%.

(i) No error message is

displayed.

(ii) An error message is

displayed indicating that a

process time slice must be

greater than 0%.

(iii) An error message is

displayed indicating that a

process cannot reside in a

passive partition.

100

Test

Purpose Test Description Expected Result

C11. To ensure the sum of time

slices allocated to all

processes in a partition

equal to 100% of the time

slices allocated to that

partition.

(i) The sum of time_slices

of all processes of a

part_id is equal to 100%.

(ii) The sum of

time_slices of all

processes of a part_id is

less than 100%.

(iii) The sum of

time_slices of all

processes of a part_id

exceeds 100%.

(i) No error message is

displayed.

(ii) & (iii) An error

message is displayed

indicating that the sum of

time slices must be equal

to 100% of the time slices

allocated to that partition.

Header

C12. To ensure the vector

description does not

exceed 32 characters.

 (i) The description

contains no characters.

 (ii) The description

contains between 1 and

32 characters.

 (iii) The description

contains 33 characters.

(i) & (ii) No error

message is displayed.

 (iii) An error message is

displayed indicating that

the value is greater than

the max length.

Audit Buffer Configuration

C13. To ensure the

enable_audit can only be

set to either 0 (disable

audit) or 1 (enable audit).

(i) The field is set to 0.

(ii) The field is set to 1.

(iii) The field is set to

other arbitrary invalid

values, e.g., false

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the value is invalid.

101

Test

Purpose Test Description Expected Result

C14. To ensure only one of the

actions {overwrite, halt,

shutdown} are taken

when the audit buffer is

full.

The action_full field is set

to other arbitrary invalid

values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

C15. To ensure the number of

audit records that can be

buffered is between 1 and

65535.

(i) The max_recs field is

set to 1.

(ii) The max_recs field is

set to 65535.

(iii) The max_recs field is

set to 0.

(iv) The max_recs field is

set to 65536.

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the element is below the

minimum range

(“minInclusive” facet-

value is violated1).

(iv) An error message is

displayed indicating that

the element exceeds the

maximum range

(“maxInclusive” facet-

value is violated2).

1 A facet restricts the values of an element to a specific range or length. This message indicates the

minimum value constraint has been violated.

2 This message indicates the maximum value constraint has been violated.

102

Test

Purpose Test Description Expected Result

C16. To ensure the maximum

delay before shutdown

when the audit buffer is

full is between 0 and 60

(seconds).

(i) The delay field is set

to 0.

(ii) The delay field is set

to 60.

(iii) The delay field is set

to -1.

(iv) The delay field is set

to 61.

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the element is below the

minimum range.

(“minInclusive” facet-

value is violated).

(iv) An error message is

displayed indicating that

the element exceeds the

maximum range.

(“maxInclusive” facet-

value is violated).

Runtime

C17. To ensure the runtime

executable is not null and

the length of the

executable path does not

exceed 64 characters.

(i) The executable path

contains between 1 and

64 characters.

(ii) The executable path is

empty.

(iii) The executable path

contains 65 characters.

(i) No error message is

displayed.

(ii) An error message is

displayed indicating that

the value is less than the

minimum length.

(iii) An error message is

displayed indicating that

the value is greater than

the max length.

103

Test

Purpose Test Description Expected Result

C18. To ensure the gate path is

not null and length of the

gate path does not exceed

64 characters.

(i) The gate path contains

between 1 and 64

characters.

(ii) The gate path is

empty.

(iii) The gate path

contains 65 characters.

(i) No error message is

displayed.

(ii) An error message is

displayed indicating that

the value is less than the

minimum length.

(iii) An error message is

displayed indicating that

the value is greater than

the max length.

C19. To ensure the display

field can only be set to

either 0 (do not display)

or 1 (display).

(i) The display field is set

to 0.

(ii) The display field is set

to 1.

(iii) The display field is

set to other invalid

arbitrary values.

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the value does not match

the defined enumeration.

C20. To ensure the message

type field can only be one

of {Status, Partition with

focus, Both}.

The msg_type field is set

to other arbitrary invalid

values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

Partitions

104

Test

Purpose Test Description Expected Result

C21. To ensure the duration for

one round-robin

scheduling of all

processes in all partitions

is greater than 0.

(i) The duration is set to 1

or more.

(ii) The duration is set to

0 or less.

(i) No error message is

displayed.

(ii) An error message is

displayed indicating that

the element is below the

minimum range.

C22. To ensure the total

number of partitions is

between 1 and 256.

(i) 1 partition is specified.

(ii) 256 partitions are

specified.

(iii) There are no

partitions specified.

(iv) There are 257

partitions specified.

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that a

partition tag is expected.

(iv) An error message is

displayed indicating that

the partition ID ‘257’

exceeds the maximum

range.

C23. To ensure the partition

description does not

exceed 32 characters.

(i) The description

contains no characters.

(ii) The description

contains between 1 and

32 characters.

(iii) The description

contains 33 characters.

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the value is greater than

the max length.

105

Test

Purpose Test Description Expected Result

C24. To ensure that there is at

least one active partition

defined when a secure

attention key (SAK)

partition is defined.

(i) No active partition is

specified (time slice

equals 0).

(ii) 1 partition with time

slice greater than 0 is

defined.

(i) An error message is

displayed indicating that

at least 1 active partition

is required.

(focus_id cannot refer to a

passive partition.)

(ii) No error message is

displayed.

C25. To ensure a partition can

contain between 0 and

512 processes.

(i) A partition contains no

process.

(ii) A partition contains

512 processes.

(iii) A partition contains

513 processes.

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the partition exceeded the

maximum number of

processes allowed.

Policies

C26. To ensure the partition to

partition (PTP) mode can

only be one of {NA, RO,

RW, WO}.

The mode field is set to

other arbitrary invalid

values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

C27. To ensure the Partitioned

Information Flow Policy

acyclic subset (PAS)

mode can only be one of

{NA, RO, RW, WO}.

The mode field is set to

other arbitrary invalid

values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

Data Segments

106

Test

Purpose Test Description Expected Result

C28. To ensure a data segment

path is defined and the

length of the path does

not exceed 64 characters.

(i) The path contains

between 1 and 64

characters.

(ii) The path contains no

characters.

(iii) The path contains 65

characters.

(i) No error message is

displayed.

(ii) An error message is

displayed indicating that

the value is less than the

min length.

(iii) An error message is

displayed indicating that

the value is greater than

the max length.

C29. To ensure a data segment

description does not

exceed 32 characters.

(i) The description

contains no characters.

(ii) The description

contains between 1 and

32 characters.

(iii) The description

contains 33 characters.

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the value is greater than

the max length.

107

Test

Purpose Test Description Expected Result

C30. To ensure the privilege

level of data segments is

between 0 and 3.

A data segment is given a

pl value of

(i) 0

(ii) 3

(iii) -1

(iv) 4

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the element is below the

minimum range

(“minInclusive” facet-

value is violated).

(vi) An error message is

displayed indicating that

the element exceeds the

maximum range

(“maxInclusive” facet-

value is violated).

C31. To ensure that the start

state of a data segment is

one of {swapin,

swapout}.

The start_state field is set

to other arbitrary invalid

values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

C32. To ensure that the audit

events for data segments

are only one of {swapin,

flush, swapout} X

{success, failure, both}.

The event and type field is

set to other arbitrary

invalid values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

108

Test

Purpose Test Description Expected Result

Memory Segments

C33. To ensure a memory

segment description does

not exceed 32 characters.

(i) The description

contains no characters.

(ii) The description

contains between 1 and

32 characters

(iii) The description

contains 33 characters.

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the value is greater than

the max length.

C34. To ensure the privilege

level of memory

segments are between 0

and 3.

A memory segment is

given a pl value of

(i) 0

(ii) 3

(iii) -1

(iv) 4

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the element is below the

minimum range

(“minInclusive” facet-

value is violated).

(vi) An error message is

displayed indicating that

the element exceeds the

maximum range

(“maxInclusive” facet-

value is violated).

C35. To ensure the audit events

for memory segments are

only one of {created} X

{success, failure, both}.

The event and type field is

set to other arbitrary

values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

109

Test

Purpose Test Description Expected Result

Eventcounts and Sequencers

C36. To ensure the total

number of eventcounts is

less than 64.

(i) No eventcount is

specified.

(ii) There are 64

eventcounts specified.

(iii) There are 65

eventcounts specified.

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the synchronization ID

‘64’ exceeds the

maximum range.

C37. To ensure an eventcount

description is does not

exceed 32 characters.

 (i) The description

contains no characters.

(ii) The description

contains between 1 and

32 characters.

(iii) The description

contains 33 characters.

(i) & (ii) No error

message is displayed.

(ii) An error message is

displayed indicating that

the value is greater than

the max length.

C38. To ensure that the audit

events for eventcounts are

only one of {advance,

read, await, wakeup} X

{success, failure, both}.

The event and type field is

set to other arbitrary

values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

110

Test

Purpose Test Description Expected Result

C39. To ensure the total

number of sequencers is

less than 64.

(i) No sequencer is

specified.

(ii) There are 64

sequencer specified.

(iii) There are 65

sequencer specified.

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the synchronization ID

‘64’ exceeds the

maximum range.

C40. To ensure a sequencer

description is does not

exceed 32 characters.

(i) The description

contains no characters.

(ii) The description

contains 32 characters.

(iii) The description

contains 33 characters.

(i) & (ii) No error

message is displayed.

(ii) An error message is

displayed indicating that

the value is greater than

the max length.

C41. To ensure that the audit

events for sequencers are

only one of {ticket} X

{success, failure, both}.

The event and type field is

set to other arbitrary

values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

Devices

C42. To ensure the type field

of any device is one of

{data, control}.

The type field is set to

other arbitrary values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

111

Test

Purpose Test Description Expected Result

C43. To ensure the description

of any device does not

exceed 32 characters.

(i) The description

contains no characters.

(ii) The description

contains 32 characters.

(iii) The description

contains 33 characters.

(i) & (ii) No error

message is displayed.

(ii) An error message is

displayed indicating that

the value is greater than

the max length.

C44. To ensure devices can be

configured to

{multiplexed, dedicated}.

The attribute field is set

to other arbitrary values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

C45. To ensure the total

number of exported

keyboard devices is no

more than 1.

(It is possible to have no

connected keyboard in

order to support

embedded systems)

(i) There is no keyboard

device and no SAK

partition specified.

(ii) There is no keyboard

device, but the SAK

partition is specified.

(iii) There is 1 keyboard

device specified.

(iv) There are 2 keyboard

devices specified.

(i) No error message is

displayed.

(ii) An error message is

displayed indicating that

the SAK partition is

defined, but no keyboard

is configured.

(iii) No error message is

displayed.

(iv) An error message is

displayed indicating that

the 2nd element is not

expected.

112

Test

Purpose Test Description Expected Result

C46. To ensure the incoming

scan code buffer size of

keyboard devices is

between 32 and 1024.

(i) The keyboard

buffer_size is set to 32.

(ii) The keyboard

buffer_size is set to 1024.

(iii) The keyboard

buffer_size is set to 31.

(iv) The keyboard

buffer_size is set to 1025.

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the element is below the

minimum range

(“minInclusive” facet-

value is violated).

(iv) An error message is

displayed indicating that

the element exceeds the

maximum range

(“maxInclusive” facet-

value is violated).

C47. To ensure the total

number of PL1 message

devices is between 0 and

1.

(i) No PL1 message

device is specified.

(ii) 1 PL1 message device

is specified.

(iii) 2 PL1 message

devices are specified.

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the element is not

expected.

113

Test

Purpose Test Description Expected Result

C48. To ensure that the number

of buffered incoming

frames for network

devices is between 32 and

256.

(i) A network device is

in_buffer is set to 32.

(ii) A network device is

in_buffer is set to 256.

(iii) A network device is

in_buffer is set to 31.

(iv) A network device is

in_buffer is set to 257.

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the element is below the

minimum range

(“minInclusive” facet-

value is violated).

(iv) An error message is

displayed indicating that

the element exceeds the

maximum range

(“maxInclusive” facet-

value is violated).

114

Test

Purpose Test Description Expected Result

C49. To ensure that the number

of buffered outgoing

frames for network

devices is between 32 and

256.

(i) A network device is

out_buffer is set to 32.

(ii) A network device is

out_buffer is set to 256.

(iii) A network device is

out_buffer is set to 31.

(iv) A network device is

out_buffer is set to 257.

(i) & (ii) No error

message is displayed (iii)

An error message is

displayed indicating that

the element is below the

minimum range

(“minInclusive” facet-

value is violated).

(iv) An error message is

displayed indicating that

the element exceeds the

maximum range

(“maxInclusive” facet-

value is violated).

C50. To ensure the initial states

of network devices are

one of {started, stopped}.

The initial_state field is

set to other arbitrary

values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

C51. To ensure that network

devices can be set to

encrypted (1) or

unencrypted (0).

(i) The encryption field is

set to 0.

(ii) The encryption field

is set to 1.

(iii) The encryption field

is set to arbitrary invalid

values.

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the value does not match

the defined data type.

115

Test

Purpose Test Description Expected Result

C52. To ensure network

devices can be configured

to {promiscuous, non-

promiscuous}.

The read field is set to

other arbitrary invalid

values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

C53. To ensure the MAC

address format is

XX:XX:XX:XX:XX,

where X is a hexadecimal

value between ‘0’ and

‘F’.

The mac_address field is

set to other invalid

formats.

An error message is

displayed indicating that

the element does not

match the pattern “[0-

F]{2}:[0-F]{2}:[0-

F]{2}:[0-F]{2}:[0-

F]{2}:[0-F]{2}.”

C54. To ensure the total

number of exported

screen devices is no more

than 1.

(It is possible to have no

connected screen in order

to support embedded

systems.)

(i) There is no screen

device and no initial

focus partition specified.

(ii) There is no screen

device, but the initial

focus partition is

specified.

(iii) There is 1 screen

device specified.

(iv) There are 2 screen

devices specified.

(i) No error message is

displayed.

(ii) An error message is

displayed indicating that

the initial focus partition

is defined, but no screen

is configured.

(iii) No error message is

displayed.

(iv) An error message is

displayed indicating that

the element is not

expected.

116

Test

Purpose Test Description Expected Result

C55. To ensure that the audit

events for devices are

only one of {read, data,

write data, read

metadata, write

metadata} X {success,

failure, both}.

The event and type field is

set to other arbitrary

values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

Processes and Subjects

C56. To ensure the total

number of processes in

the system in the

configuration vector is

between 1 and 512, and

consequently that there is

at least 1 active partition.

(i) There is one process

defined.

(ii) There are 512

processes defined.

(iii) There are no

processes defined.

(iv) There are 513

processes specified.

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the process element is

expected.

(iv) An error message is

displayed indicating that

the process identifier

exceeds the maximum

range (because process

identifiers are unique).

117

Test

Purpose Test Description Expected Result

C57. To ensure the total

number of subjects within

a process (excluding PL0

subject) is between 1 and

3.

(i) 1 subject is specified

within a process..

(ii) 3 subjects are

specified within a

process.

(iii) No subjects are

specified within a

process.

(iv) 4 subjects are

specified within a

process.

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that a

subject element is

expected.

(iv) An error message is

displayed indicating that

the subject element is not

expected.

C58. To ensure the privilege

levels of subjects is

between 0 and 3.

A subject is given a pl

value of

(i) 0

(ii) 3

(iii) -1

(iv) 4

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the element is below the

minimum range

(“minInclusive” facet-

value is violated).

(vi) An error message is

displayed indicating that

the element exceeds the

maximum range

(“maxInclusive” facet-

value is violated).

118

Test

Purpose Test Description Expected Result

C59. To ensure subjects can be

configured to be trusted

(1) or un-trusted (0).

(i) The trusted field is set

to 0.

(ii) The trusted field is set

to 1.

(iii) The trusted field is

set to other arbitrary

values.

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the value does not match

the defined enumeration.

C60. To ensure the length of

the executable path does

not exceed 64 characters.

(i) The exe_path contains

64 characters.

(ii) The exe_path is

empty.

(iii) The exe_path

contains 65 characters.

(i) No error message is

displayed.

(ii) An error message is

displayed indicating that

the value is less than the

min length.

(iii) An error message is

displayed indicating that

the value is greater than

the max length.

C61. To ensure the length of

the gate path does not

exceed 64 characters.

 (i) The gate_path

contains no characters.

 (ii) The gate_path

contains 64 characters.

(iii) The gate_path

contains 65 characters.

(i) & (ii) No error

message is displayed.

(iii) An error message is

displayed indicating that

the value is greater than

the max length.

119

Test

Purpose Test Description Expected Result

C62. To ensure subjects can

have {NA, RO, RW, WO}

permissions to

eventcounts.

A subject is assigned

permission to an

eventcount that is not in

one of these values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

C63. To ensure subjects can

only have {NA, RW}

permissions to

sequencers.

A subject is assigned

permission to a sequencer

that is not in one of these

values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

C64. To ensure subjects can

have {NA, RO, RW, WO}

permissions to data

segments.

A subject is assigned

permission to a data

segment that is not in one

of these values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

C65. To ensure subjects can

have {NA, RO, RW, WO}

permissions to memory

segments.

A subject is assigned

permission to a memory

segment that is not in one

of these values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

C66. To ensure subjects can

only have {NA, RO}

permissions to keyboards.

A subject is assigned

permission to a keyboard

device that is not in one

of these values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

C67. To ensure subjects can

have {NA, RO, RW, WO}

permissions to network

devices.

A subject is assigned

permission to a network

device that is not in one

of these values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

120

Test

Purpose Test Description Expected Result

C68. To ensure subjects can

have {NA, RO, RW, WO}

permissions to screen

devices.

A subject is assigned

permission to a screen

device that is not in one

of these values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

C69. To ensure subjects can

have {NA, RO, RW, WO}

permissions to PL1

message devices.

A subject is assigned

permission to a PL1

message device that is not

in one of these values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

C70. To ensure subjects can

have {NA, RO, RW, WO}

permissions to other

subjects.

A subject is assigned

permission to a subject

that is not in one of these

values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

C71. To ensure the audit events

for subjects are only one

of {interrupt, received

signal, send signal, read

device, write device, read

eventcount, advance

eventcount, wait

eventcount, wakeup

eventcount, ticket

sequencer} X {success,

failure, both}.

The event and type field is

set to other arbitrary

values.

An error message is

displayed indicating that

the value does not match

the defined enumeration.

121

3. Consistency Checking Tests

The objective of the tests described in Table 11 is to ensure that the Configuration

Vector Tool checks and maintains the referential integrity of partitions, subjects and

resources in the configuration vector. Since the correct configuration is already verified

in C1, only negative test cases are covered in this section.

122

Table 11. Consistency Checking Tests

Test

Purpose Test Description Expected Result

Partitions

C72. To ensure that partitions

are uniquely identified by

their identifier field.

There is more than one

partition with the same

identifier.

An error message is

displayed indicating that

the partition_pk identity

constraint is violated.

C73. To ensure the secure

attention key (SAK)

partition is an active

partition, and a keyboard

is also configured.

(i) The partitions sak_id

does not refer to any of

the defined partitions.

(ii) The partitions sak_id

refers to a passive

partition identifier.

(i) & (ii) An error

message is displayed

indicating that sak_id

cannot refer to an invalid

or passive partition.

C74. To ensure the partition

that received the initial

focus is an active

partition.

(i) The partitions focus_id

does not refer to any of

the defined partitions.

(ii) The partitions

focus_id refers to a

passive partition.

(i) & (ii) An error

message is displayed

indicating that focus_id

cannot refer to an invalid

or passive partition.

123

Test

Purpose Test Description Expected Result

C75. To ensure the subject

partition identifier under

partition-to-partition

(PTP) policy is an active

partition.

(i) The PTP subj_part_id

does not refer to any of

the defined partitions.

(ii) The PTP subj_part_id

refers to a partition

identifier that is passive.

(i) An error message is

displayed indicating that

subj_part_id cannot refer

to an invalid or passive

partition.

(ii) An error message is

displayed indicating that

subj_part_id cannot refer

to an invalid or passive

partition.

C76. To ensure the resource

partition identifier under

PTP policy is a valid

partition.

(i) The PTP res_part_id

does not refer to any of

the defined partitions.

(ii) The PTP subj_part_id

refers to a partition

identifier that is passive.

(i) An error message is

displayed indicating that

the res_part_id_fk

identity constraint is

violated.

(ii) No error message is

displayed.

C77. To ensure the subject

partition identifier under

Partitioned Information

Flow Policy acyclic

subset (PAS) is an active

partition.

(i) The PAS subj_part_id

does not refer to any of

the defined partitions.

(ii) The PAS subj_part_id

refers to a passive

partition.

(i) An error message is

displayed indicating that

subj_part_id cannot refer

to an invalid or passive

partition.

(ii) An error message is

displayed indicating that

subj_part_id cannot refer

to an invalid or passive

partition.

124

Test

Purpose Test Description Expected Result

C78. To ensure the resource

partition identifier under

PAS is a valid partition.

(i) The PAS res_part_id

does not refer to any of

the defined partitions.

(ii) The PAS res_part_id

is a passive partition.

(i) An error message is

displayed indicating that

the res_part_id_fk

identity constraint is

violated.

(ii) No error message is

displayed.

C79. To ensure that the home

partitions of data

segments are valid

partitions.

The dseg part_id does not

refer to any of the defined

partitions.

An error message is

displayed indicating that

the dseg_partition_fk

identity constraint is

violated.

C80. To ensure that the home

partitions of memory

segments are valid

partitions.

The mseg part_id does

not refer to any of the

defined partitions.

An error message is

displayed indicating that

the mseg_partition_fk

identity constraint is

violated.

C81. To ensure that the home

partitions of eventcounts

are valid partitions.

The eventcount part_id

does not refer to any of

the defined partitions.

An error message is

displayed indicating that

the

eventcount_partition_fk

identity constraint is

violated.

125

Test

Purpose Test Description Expected Result

C82. To ensure that the home

partitions of sequencers

are valid partitions.

The sequencer part_id

does not refer to any of

the defined partitions.

An error message is

displayed indicating that

the

sequencer_partition_fk

identity constraint is

violated.

C83. To ensure that the home

partitions of devices are

valid partitions.

The device part_id does

not refer to any of the

defined partitions.

An error message is

displayed indicating that

the device_partition_fk

identity constraint is

violated.

C84. To ensure that the initial

partition of devices are

valid partitions.

The device init_part_id

does not refer to any of

the defined partitions.

An error message is

displayed indicating that

the

device_initpartition_fk

identity constraint is

violated.

126

Test

Purpose Test Description Expected Result

C85. To ensure that processes

are mapped to partitions

that have been allocated

time slices greater than

0%.

(i) The process part_id

does not refer to any of

the defined partition

identifier.

(ii) The process part_id

value refers to a partition

with no time slice

allocated.

(i) An error message is

displayed indicating that

the process_partition_fk

identity constraint is

violated.

(ii) An error message is

displayed indicating that

part_id cannot refer to an

invalid or partition with

no time slices allocated.

Subject-Resource-Permissions to Resources

C86. To ensure that

eventcounts are uniquely

identified by their

identifier field.

There is more than one

eventcount with the same

identifier.

An error message is

displayed indicating that

the eventcount_pk

identity constraint is

violated.

C87. To ensure eventcount

permissions refer to valid

eventcounts.

The eventcount identifier

does not refer to any of

the defined eventcounts.

An error message is

displayed indicating that

the subj_eventcount_fk

identity constraint is

violated.

C88. To ensure that sequencers

are uniquely identified by

their identifier field.

There is more than one

sequencer with the same

identifier.

An error message is

displayed indicating that

the sequencer_pk identity

constraint is violated.

127

Test

Purpose Test Description Expected Result

C89. To ensure sequencer

permissions refer to valid

sequencers.

The identifier value does

not refer to any of the

defined sequencers.

An error message is

displayed indicating that

the subj_sequencer_fk

identity constraint is

violated.

C90. To ensure that data

segments are uniquely

identified by their path.

There is more than one

data segment with the

same path.

An error message is

displayed indicating that

the dseg_pk identity

constraint is violated.

C91. To ensure data segment

permissions refer to valid

data segments.

The path value does not

refer to any of the defined

dsegs.

An error message is

displayed indicating that

the subj_dseg_fk identity

constraint is violated.

C92. To ensure that memory

segments are uniquely

identified by their

identifier.

There is more than one

memory segment with the

same identifier.

An error message is

displayed indicating that

the mseg_pk identity

constraint is violated.

C93. To ensure memory

segment permissions refer

to valid memory

segments.

The identifier value does

not refer to any of the

defined memory

segments.

An error message is

displayed indicating that

the subj_mseg_fk identity

constraint is violated.

C94. To ensure that devices are

uniquely identified by the

<major, minor, type>

triple.

There is more than one

device with the same

<major, minor, type>.

An error message is

displayed indicating that

the device_pk identity

constraint is violated.

128

Test

Purpose Test Description Expected Result

C95. To ensure device

permissions refer to valid

devices.

The <major, minor, type>

triple does not refer to

any of the defined

devices.

An error message is

displayed indicating that

the subj_device_fk

identity constraint is

violated.

C96. To ensure that processes

are uniquely identified by

their identifier field.

There is more than one

process with the same

identifier.

An error message is

displayed indicating that

the process_pk identity

constraint is violated.

C97. To ensure that subjects

are uniquely identified by

the <process_id, pl>

tuple.

There is more than one

subject with the same

<process_id, pl>.

An error message is

displayed indicating that

the subj_unique identity

constraint is violated.

C98. To ensure subject

permissions refer to valid

subjects.

The <process_id, pl>

triple does not refer to

any of the defined

subjects.

An error message is

displayed indicating that

the subj_subj_fk identity

constraint is violated.

129

B. TEST RESULTS

The tests described in Section A were automated using the JUnit testing

framework and pre-generated configuration vectors. Automating the tests enabled quick

verification that an update introduced into the XML Schema would not cause other tests

to fail. The test setup and procedures are documented in Appendix B. All the tests

completed successfully. The test results are summarized in Tables 12 to 14.

Table 12. Functional Test Results

Test

Purpose Test
Result

Format conversion utility

C1. To verify that the command line Configuration Vector Tool is able to

convert an XML Configuration Vector into its binary format.

Passed

C2. To verify that the tool is able to handle invalid input XML files. Passed

C3. To verify that the tool is able to handle invalid input XML Schema

(XSD) files.

Passed

C4. To verify that the tool is able to convert a binary Configuration Vector

into its XML format.

C5. To verify that the tool is able to handle invalid input binary

configuration vectors.

Passed

C6. To verify that the binary vector can be read by the LPSK. Passed

HMAC utility

C7. To verify the HMAC utility is able to generate a 32-byte MAC based on

a password string and an input file.

Passed

C8. To verify that the tool generates the same MAC only if the same

password and file is used.

Passed

130

Table 13. Boundary Value Test Results

Test

Purpose Test
Result

C9. To ensure the total of CPU time allocated to all partitions is exactly

100%.

Passed

C10. To ensure that a process is allocated a time slice greater than 0%. Passed

C11. To ensure the sum of time slices allocated to all processes in a partition

equal to 100% of the time slices allocated to that partition.

Passed

Header

C12. To ensure the vector description does not exceed 32 characters. Passed

Audit Buffer Configuration

C13. To ensure the enable_audit can only be set to either 0 (disable audit) or

1 (enable audit).

Passed

C14. To ensure only one of the actions {overwrite, halt, shutdown} are taken

when the audit buffer is full.

Passed

C15. To ensure the number of audit records that can be buffered is between 1

and 65535.

Passed

C16. To ensure the maximum delay before shutdown when the audit buffer is

full is between 0 and 60 (seconds).

Passed

C17. To ensure the runtime executable is not null and the length of the

executable path does not exceed 64 characters.

Passed

C18. To ensure the gate path is not null and length of the gate path does not

exceed 64 characters.

Passed

131

Test

Purpose Test
Result

C19. To ensure the display field can only be set to either 0 (do not display) or

1 (display).

Passed

C20. To ensure the message type field can only be one of {Status, Partition

with focus, Both}.

Passed

Partitions

C21. To ensure the duration for one round-robin scheduling of all processes in

all partitions is greater than 0.

Passed

C22. To ensure the total number of partitions is between 1 and 256. Passed

C23. To ensure the partition description does not exceed 32 characters. Passed

C24. To ensure that there is at least one active partition defined when a secure

attention key (SAK) partition is defined.

Passed

C25. To ensure a partition can contain between 0 and 512 processes. Passed

Policies

C26. To ensure the partition to partition (PTP) mode can only be one of {NA,

RO, RW, WO}.

Passed

C27. To ensure the Partitioned Information Flow Policy acyclic subset (PAS)

mode can only be one of {NA, RO, RW, WO}.

Passed

Data Segments

C28. To ensure a data segment path is defined and the length of the path does

not exceed 64 characters.

Passed

C29. To ensure a data segment description does not exceed 32 characters. Passed

C30. To ensure the privilege level of data segments is between 0 and 3. Passed

132

Test

Purpose Test
Result

C31. To ensure that the start state of a data segment is one of {swapin,

swapout}.

Passed

C32. To ensure that the audit events for data segments are only one of

{swapin, flush, swapout} X {success, failure, both}.

Passed

C33. To ensure a memory segment description does not exceed 32 characters. Passed

C34. To ensure the privilege level of memory segments are between 0 and 3. Passed

C35. To ensure that the audit events for memory segments are only one of

{created} X {success, failure, both}.

Passed

Eventcounts and Sequencers

C36. To ensure the total number of eventcounts is less than 64. Passed

C37. To ensure an eventcount description is does not exceed 32 characters. Passed

C38. To ensure that the audit events for eventcounts are only one of {advance,

read, await, wakeup} X {success, failure, both}.

Passed

C39. To ensure the total number of sequencers is less than 64. Passed

C40. To ensure a sequencer description is does not exceed 32 characters. Passed

C41. To that the audit events for ensure sequencers are only one of {ticket} X

{success, failure, both}.

Passed

Devices

C42. To ensure the type field of any device is one of {data, control}. Passed

C43. To ensure the description of any device does not exceed 32 characters. Passed

C44. To ensure devices can be configured to {multiplexed, dedicated}. Passed

133

Test

Purpose Test
Result

C45. To ensure the total number of exported keyboard devices is no more

than 1. (It is possible to have no connected keyboard in order to support

embedded systems)

Passed

C46. To ensure the incoming scan code buffer size of keyboard devices is

between 32 and 1024.

Passed

C47. To ensure the total number of PL1 message devices is between 0 and 1. Passed

C48. To ensure that the number of buffered incoming frames for network

devices is between 32 and 256.

Passed

C49. To ensure that the number of buffered outgoing frames for network

devices is between 32 and 256.

Passed

C50. To ensure the initial states of network devices are one of {started,

stopped}.

Passed

C51. To ensure that network devices can be set to encrypted (1) or

unencrypted (0).

Passed

C52. To ensure network devices can be configured to {promiscuous, non-

promiscuous}.

Passed

C53. To ensure the MAC address format is XX:XX:XX:XX:XX, where X is a

hexadecimal value between ‘0’ and ‘F’.

Passed

C54. To ensure the total number of exported screen devices is no more than 1.

(It is possible to have no connected screen in order to support embedded

systems.)

Passed

C55. To ensure that the audit events for devices are only one of {read, data,

write data, read metadata, write metadata} X {success, failure, both}.

Passed

134

Test

Purpose Test
Result

Processes and Subjects

C56. To ensure the total number of processes in the system in the

configuration vector is between 1 and 512, and consequently that there

is at least 1 active partition.

Passed

C57. To ensure the total number of subjects within a process (excluding PL0

subject) is between 1 and 3.

Passed

C58. To ensure the privilege levels of subjects is between 0 and 3. Passed

C59. To ensure subjects can be configured to be trusted (1) or un-trusted (0). Passed

C60. To ensure the length of the executable path does not exceed 64

characters.

Passed

C61. To ensure the length of the gate path does not exceed 64 characters. Passed

C62. To ensure subjects can have {NA, RO, RW, WO} permissions to

eventcounts.

Passed

C63. To ensure subjects can only have {NA, RW} permissions to sequencers. Passed

C64. To ensure subjects can have {NA, RO, RW, WO} permissions to data

segments.

Passed

C65. To ensure subjects can have {NA, RO, RW, WO} permissions to memory

segments.

Passed

C66. To ensure subjects can only have {NA, RO} permissions to keyboards. Passed

C67. To ensure subjects can have {NA, RO, RW, WO} permissions to network

devices.

Passed

C68. To ensure subjects can have {NA, RO, RW, WO} permissions to screen

devices.

Passed

135

Test

Purpose Test
Result

C69. To ensure subjects can have {NA, RO, RW, WO} permissions to PL1

message devices.

Passed

C70. To ensure subjects can have {NA, RO, RW, WO} permissions to other

subjects.

Passed

C71. To ensure that the audit events for subjects are only one of {interrupt,

received signal, send signal, read device, write device, read eventcount,

advance eventcount, wait eventcount, wakeup eventcount, ticket

sequencer} X {success, failure, both}.

Passed

Table 14. Consistency Checking Test Results

Test

Purpose Test
Result

Partitions

C72. To ensure that partitions are uniquely identified by their identifier field. Passed

C73. To ensure the secure attention key (SAK) partition is an active partition,

and a keyboard is also configured.

Passed

C74. To ensure the partition that received the initial focus is an active

partition.

Passed

C75. To ensure the subject partition identifier under partition-to-partition

(PTP) policy is an active partition.

Passed

C76. To ensure the resource partition identifier under PTP policy is a valid

partition.

Passed

C77. To ensure the subject partition identifier under Partitioned Information

Flow Policy acyclic subset (PAS) is an active partition.

Passed

136

Test

Purpose Test
Result

C78. To ensure the resource partition identifier under PAS is a valid partition. Passed

C79. To ensure that the home partitions of data segments are valid partitions. Passed

C80. To ensure that the home partitions of memory segments are valid

partitions.

Passed

C81. To ensure that the home partitions of eventcounts are valid partitions. Passed

C82. To ensure that the home partitions of sequencers are valid partitions. Passed

C83. To ensure that the home partitions of devices are valid partitions. Passed

C84. To ensure that the initial partition of devices are valid partitions. Passed

C85. To ensure that processes are mapped to partitions that have been

allocated time slices greater than 0%.

Passed

C86. To ensure that eventcounts are uniquely identified by their identifier

field.

Passed

C87. To ensure eventcount permissions refer to valid eventcounts. Passed

C88. To ensure that sequencers are uniquely identified by their identifier

field.

Passed

C89. To ensure sequencer permissions refer to valid sequencers. Passed

C90. To ensure that data segments are uniquely identified by their path. Passed

C91. To ensure data segment permissions refer to valid data segments. Passed

C92. To ensure that memory segments are uniquely identified by their

identifier.

Passed

C93. To ensure memory segment permissions refer to valid memory

segments.

Passed

137

Test

Purpose Test
Result

C94. To ensure that devices are uniquely identified by the <major, minor,

type> triple.

Passed

C95. To ensure device permissions refer to valid devices. Passed

C96. To ensure that processes are uniquely identified by their identifier field. Passed

C97. To ensure that subjects are uniquely identified by the <process_id, pl>

tuple.

Passed

C98. To ensure subject permissions refer to valid subjects. Passed

C. SUMMARY

This chapter outlined the tests performed on the implemented LPSK

Configuration Vector Tool, and summarized the test results. All the test results were

consistent with their expected results. The next chapter concludes this thesis and provides

recommendations for future work.

138

THIS PAGE INTENTIONALLY LEFT BLANK

139

VII. CONCLUSION

A. RESULTS

This work resulted in significant contributions. A new configuration vector format

was defined, in XML and binary representations, to support new features and

enhancements to the LPSK that impose additional configuration requirements. A XML-

based representation of the LPSK configuration, including its security policies, proved to

be viable. It enforced a structure on the configuration vector, with tags that describe the

content. The LPSK Configuration Vector XML format was formalized through the

definition of its XML Schema using XSD 1.0. XSD 1.0 has a rich set of data types, and

the identity constraint definition (using key, keyref and unique) feature was useful. It

allowed most of the validation rules to be expressed in the XML Schema, such that

configuration vectors could be validated by standard XML parsers and editors. It also

allowed users to use the auto-complete feature in some XML editors to suggest valid

values. Nonetheless, the XSD 1.0 grammar is limited and could not express all the

required configuration vector validation rules that were required. Instead some of the

rules had to be coded into the format conversion utility.

The new LPSK configuration vector format has many new fields, making editing

a complex task. Several GUI-based XML editors were evaluated based on functional,

usability and other requirements. The ability to validate XML configuration vectors

against the XML Schema developed is a pertinent feature. Other features that enhanced

usability included good visualization, auto-completion of data based on the XML

Schema, informative error messages that indicate corrective actions required, and help for

users to locate sources of errors easily and quickly. These features serve to remove many

of the underlying complexities of creating configuration vectors from users.

A suite of utilities that are components of the LPSK Configuration Vector Tool

was developed that validates configuration vectors against the XML Schema, converts

them from XML format to binary format and vice-versa, and generates HMAC for

configuration vectors to provide assurance of their integrity. These utilities underwent

140

extensive functional tests, including boundary and consistency checking tests, to provide

confidence that the implementation is sound; it passed all the tests. Manually testing all

the fields in the configuration vector was extremely time-consuming. Therefore, the tests

were automated using the JUnit testing framework, enabling rapid verification that

updates introduced into the XML Schema and other code changes would not cause other

tests to fail.

B RELATED WORK

There are existing commercial-off-the-shelf implementations of high assurance

separation kernels. Wind River provides the VxWorks MILS platform that is intended to

meet real-time operating system requirements for high assurance (EAL6+) MLS

embedded systems [19]. An XML configuration tool suite, which also includes a GUI, is

provisioned to allow configuration of the system parameters as well as application-

specific and middleware-specific run-time parameters. It also includes an XML-to-binary

compiler that translates configuration data into binary format. This configuration tool

suite appears to be similar to the LPSK Configuration Tool utilities that were

implemented.

Lynuxworks offers LynxSecure, an embedded hypervisor and separation kernel

that is being designed to be certifiable to EAL7 and to satisfy the SKPP [20]. The

configuration is defined and maintained by an XML definition file and system tools.

Green Hills Software is another embedded systems software company; their INTEGRITY

178B separation kernel is certified to EAL6+ and satisfies the SKPP requirements [21].

The details concerning the level of granularity of information flow controls and the

configuration tools that are available for both kernels are not publicly available.

C. RECOMMENDATIONS FOR FUTURE WORK

The LPSK is still in its infancy; many features defined in the functional

specifications are either undergoing development or have not been developed. Hence, the

new configuration vector could not be fully tested in the LPSK. The LPSK was modified

to read in the new binary vector and translate the configuration into the format that the

141

LPSK currently recognizes; new configuration settings were not utilized. The LPSK

requires extensive changes before the new configuration vector format can be fully

tested. An incremental approach is proposed. Currently, some of the LPSK configuration

settings (e.g., device configurations) are hardcoded. An audit subsystem was concurrently

being developed in another project, and many of the new settings are audit-related. Going

forward, enhancements would be to enable the LPSK to read these settings from the new

configuration vector and to use the new configuration vector format with the new audit

mechanism.

Currently, any change to the configuration vector requires a re-initialization of the

LPSK. A potential enhancement is to allow a subset of the configuration settings to be

dynamically changed (i.e., during run-time without re-initialization). For example,

memory segments are currently statically allocated during initialization, and cannot be re-

sized without re-booting the LPSK. Providing for dynamic reconfiguration gives the

LPSK more flexibility in managing memory resources. This is also a valid operational

requirement for emergency response systems. However, this has to be carefully analyzed

to ensure it does not introduce policy enforcement inconsistencies into the LPSK, and

without violating any requirements in the SKPP.

The W3C XML Schema Definition Language (XSD) 1.1 specification [22]

addresses some of the limitations with XSD 1.0, using assertions and rules for evaluation

using XPath 2.0 [23]. However, the specification is still in the draft stage, with limited

tool support. None of the XML editors evaluated in this thesis supports the XSD 1.1

specifications. There are other non-W3C specifications, such as RELAX NG [24] and

Schematron [25]; these were not explored. These languages can potentially be used to

overcome the limitations of XSD 1.0 in expressing the more complex configuration

vector validation. If all the validation rules are captured in a single place (i.e., in the XML

schema), the design will be more elegant and it will be easier to manage future changes to

the configuration vector format. An in-depth study into the features of these languages is

recommended.

142

THIS PAGE INTENTIONALLY LEFT BLANK

143

APPENDIX A. INSTALLATION GUIDE

This appendix describes the installation procedure for the LPSK Configuration

Vector Tool utilities.

A. SYSTEM REQUIREMENTS

The tool requires a commodity operating system (e.g., Windows) with the Java

Standard Edition Virtual Machine (JVM) installed. The tool has been successfully tested

on jre 1.6 (Java Runtime Environment). The XML editor, XMLSpy, runs natively on

Windows platform. The Altova Web site states that virtualization software, Parallels for

Mac and Wine, is required for running it on MacOS and RedHat Linux respectively.

B. PROCEDURES

1. The LPSK Configuration Vector Tool distribution contains the following files.

Create and copy them into a working directory (e.g., c:\config_vector).

 hmac.jar - the HMAC utility

 vector.jar - the Format Conversion utility

 LPSKSchema.xsd - the LPSK XML Schema. This does not have to be in

the same directory as the jar files.

 valid.xml - a sample XML configuration vector that conforms to

LPSKSchema.xsd. This does not have to be in the same directory as the jar

files.

2. To verify the installation, execute the command “java -jar vector.jar -bin

valid.xml valid.bin LPSKSchema.xsd”, where valid.xml is the input XML

configuration vector, valid.bin is the output binary configuration vector and

LPSKSchema.xsd is the XML Schema file. The full path to these files must be

specified if they do not reside in the working directory. Figure 19 shows the

expected output.

144

Figure 19. Expected output of converting XML configuration vector to binary

3. Execute the command “java -jar vector.jar -bin valid.xml valid.bin

LPSKSchema.xsd”, where valid.xml is the input XML configuration vector,

valid.bin is the output binary configuration vector and LPSKSchema.xsd is the

XML Schema file. The full path to these files must be specified if they do not

reside in the working directory. Figure 20 shows the expected output.

Figure 20. Expected output of converting binary configuration vector to XML

4. Execute the command “java -jar hmac.jar.”

5. Enter the password when prompted. A strong password should be chosen;

otherwise it makes it easier for an attacker to exploit collisions in the MAC.

145

6. Enter the name of the file to create the HMAC when prompted. Figure 21

shows the expected output.

Figure 21. Expected output from the HMAC utility

7. To install XMLSpy (XML editor), download the installer from the Altova

Web site (http://www.altova.com/download-current.html) and follow the

installation instructions. Enter the key-code provided by Altova to unlock the

software. An alternative XML editor may also be used if desired.

146

THIS PAGE INTENTIONALLY LEFT BLANK

147

APPENDIX B. TEST PROCEDURES

This appendix describes the test procedures to execute the test cases outlined in

Chapter VI. Most of the tests take pre-generated XML configuration vectors as inputs to

the program, where the procedures were automated using JUnit 3 test suites. It is assumed

that the installation disk that contains the test suites is available to the tester.

A. SETUP

The setup requires the following:

 The run time LPSK environment is required by Test C3.

 The format conversion utility (vector.jar) and the HMAC conversion utility

(hmac.jar).

 A terminal running Windows (e.g., Windows XP Professional SP3), and the

eclipse.zip file, which contains the Eclipse IDE and a JUnit project named

Vector_Tests. Vector_Tests contains the following:

 src\tests - This directory contains the source code for the test cases.

 tests - This directory contains the XML configuration vectors pre-

generated for each test case.

 LPSKSchema.xsd - This is the LPSK XML Schema file used by the test

cases. The file name is hard coded into each test class, and must be

replaced with the version to be tested.

 .classpath - This file contains entries to classes and external libraries

used.

The following procedure sets up the Eclipse IDE for running the JUnit tests. If a

different operating system is used, an Eclipse IDE for the target operating system must be

installed and the test project imported into the Eclipse workspace.

148

 Open the Vector_Tests project in the Eclipse IDE.

 If the Vector_Tests project is not available in Package Explorer, load the

project into the workspace as follows:

 Select File > Import. A dialog box is displayed.

 From the dialog box, under “Select an import source”, select

“Existing Projects into Workspace” and click “Next.”

 From the Import Projects dialog box, select “Select Root

Directory” option, and click the “Browse” button. Browse to the

Vector_Tests project directory.

 Select the Vector_Tests project that appears in Projects. Check

“Copy projects into workspace.” The Vector_Tests project contains

references to the Format Conversion utility (vector.jar) and the

HMAC utility (hmac.jar). The locations of these files are listed in

.classpath.

 Click “Finish” to import the project. The project now appears in

Package Explorer.

 From Package Explorer, open the Vector_Tests project and expand src >

tests. A list of JUnit test classes is displayed.

B. PROCEDURES

1. Functional Tests

Table 15 outlines the procedure for executing the boundary value test cases

described in Chapter VI Section A2.

149

Table 15. Functional Test Procedures

Test

Procedure Expected Result

Format Conversion utility

C1 From the Windows terminal, open a command

line window. Navigate to the directory where the

format conversion utility is installed.

Run “java -jar vector.jar -bin

<Vector_Tests directory>

\tests\functional\valid.xml out.bin

<Vector_Tests

directory>\LPSKSchema.xsd.” <Vector_Tests

directory> is the location where the Vector_Tests

project is installed.

A message is displayed

indicating that the XML file

is valid, and is converted and

saved to the binary file.

150

Test

Procedure Expected Result

C2 (i) Run “java -jar vector.jar -bin

<Vector_Tests

directory>\tests\functional\invalid.xml

out.bin <Vector_Tests

directory>\LPSKSchema.xsd”, where

invalid.xml is an invalid XML configuration

vector.

(ii) Run “java -jar vector.jar -bin

<Vector_Tests

directory>\tests\functional\missing.xml

o.bin <Vector_Tests

directory>\LPSKSchema.xsd”, where

missing.xml is a non-existing file.

 (iii) Run “java -jar vector.jar -bin

<Vector_Tests

directory>\tests\functional\empty.xml

out.bin <Vector_Tests

directory>\LPSKSchema.xsd”, where

empty.xml is an empty XML configuration

vector.

(i) An error message is

displayed, the tool halts

processing and no binary

output file is produced.

(ii) An error message is

displayed indicating that it

failed to read the input file,

the tool halts processing and

no binary output file is

produced.

(iii) An error message is

displayed indicating the input

file is empty, the tool halts

processing and no binary

output file is produced.

151

Test

Procedure Expected Result

C3 (i) Run “java -jar vector.jar -bin

<Vector_Tests directory>

\tests\functional\valid.xml valid.bin

missing.xsd”, where missing.xsd is a non-

existing file.

(ii) Run “java -jar vector.jar -bin

<Vector_Tests directory>

\tests\functional\valid.xml out.bin

invalid.xsd”, where invalid.xsd is an invalid

XSD.

(i) & (ii) An error message is

displayed indicating that it

failed to read the XSD file,

the tool halts processing and

no binary output file is

produced.

C4 From the command line, run “java -jar

vector.jar -xml <Vector_Tests

directory>\tests\functional\valid.bin

out.xml <Vector_Tests

directory>\LPSKSchema.xsd.”

A message is displayed

indicating that the binary file

is converted to XML, and

that the XML file is valid.

152

Test

Procedure Expected Result

C5 (i) Run “java -jar vector.jar -xml

<Vector_Tests

directory>\tests\functional\invalid.bin

valid.xml <Vector_Tests

directory>\LPSKSchema.xsd”, where is

invalid.bin an invalid binary configuration

vector.

(ii) Run “java -jar vector.jar -xml

<Vector_Tests

directory>\tests\functional\missing.bin

valid.xml <Vector_Tests

directory>\LPSKSchema.xsd”, where is

missing.bin a non-existing binary configuration

vector.

(iii) Run “java -jar vector.jar -xml

<Vector_Tests

directory>\tests\functional\empty.bin

valid.xml <Vector_Tests

directory>\LPSKSchema.xsd”, where

empty.bin is an empty binary file.

(i) An error message is

displayed, the tool halts

processing and no binary

output file is produced.

(ii) An error message is

displayed indicating that it

failed to read the input file,

the tool halts processing and

no binary output file is

produced.

(iii) An error message is

displayed indicating the file

is empty, the tool halts

processing and no binary

output file is produced.

C6 This test requires the LPSK runtime environment.

Boot up the LPSK with the binary configuration

vector generated in Test C1.

The LPSK boots up

according to the

configurations specified in

the binary configuration

vector.

153

Test

Procedure Expected Result

HMAC utility

C7 (i) From the command line, run “java -jar

hmac.jar.” Enter the password and the path of

the file to create the HMAC when prompted.

Note the value of the MAC generated.

(ii) Repeat Test C6 without supplying any

passwords.

(iii) Repeat Test C6, supplying a non-existing

filename.

 (i) A 32-byte MAC is

displayed.

(ii) An error message is

displayed indicating that the

password cannot be empty.

(iii) An error message is

displayed indicating that it

failed to read the input file.

C8 (i) Repeat Test C6, using the same password and

file. Compare MAC generated with that displayed

in C6.

(ii) Repeat Test C6, using a different password

and the same file. Compare MAC generated with

that displayed in C6.

(iii) Repeat Test C6, using the same password,

but a different file. Compare MAC generated with

that displayed in C6.

(iv) Repeat Test C6 with a different password and

filename. Compare MAC generated with that

displayed in C6.

(i) The same 32-byte MAC is

displayed.

(ii) - (iv) A different 32-byte

MAC is displayed.

154

2. Boundary Value Tests

Table 16 outlines the procedure for executing the boundary value test cases

described in Chapter VI Section A2.

Table 16. Boundary Value Test Procedures

Test

Procedure Expected Result

C9 -

C71

Run the JUnit boundary value test suite

Select and right-click on the file

BoundaryValueTestSuite.java, then select Run

As > JUnit Test.

JUnit reports there are no

failures (Figure 22). The

expected error messages are

displayed in the console view.

Figure 22. Expected results of the boundary value tests

3. Consistency Checking Tests

Table 17 outlines the procedure for executing the consistency checking test cases

described in Chapter VI Section A3.

155

Table 17. Consistency Checking Test Procedures

Test

Procedure Expected Result

C72

-

C98

Run the JUnit consistency test suite

Select and right-click on the file

ConsistencyTestSuite.java. Then select Run As >

JUnit Test.

JUnit reports there are no

failures (Figure 23). The

expected error messages are

displayed in the console view.

Figure 23. Expected results of the consistency checking tests.

156

THIS PAGE INTENTIONALLY LEFT BLANK

 157

LIST OF REFERENCES

[1] T. D. Nguyen, T. E. Levin and C. E. Irvine, “TCX Project: High Assurance for
Secure Embedded Systems,” Proceedings of the 11th IEEE Real-Time and
Embedded Technology and Applications Symposium, pp. 21–25, March 2005.

[2] P.C. Clark, D. J. Shifflett, C. E. Irvine, T. D. Nguyen and T. E. Levin, “Trusted
Computing Exemplar (TCX) Least Privilege Separation Kernel (LPSK) Product
Functional Specification Volume I High Level Description,” 6 May 2010.

[3] World Wide Web Consortium, “Extensible Markup Language (XML) 1.0 (Fifth

Edition),” W3C Recommendation 26 November 2008,
http://www.w3.org/TR/REC-xml, Last Accessed: September 2010.

[4] J. Rushby, “The Design and Verification of Secure Systems,” 8th ACM
Symposium on Operating System Principles, ACM Operating Systems Review,
Vol. 15, No. 5 pp. 12–21.

[5] National Security Agency. “U.S. Government Protection Profile for Separation

Kernels in Environments Requiring High Robustness,” Version 1.03, 29 June
2007.

[6] J. H. Saltzer and M. D. Schroeder, “The Protection of Information in Operating

Systems,” Proceedings of the IEEE, 63(9):1278–1308, 1975.

[7] T. M. Welliver, “Configuration Tool Prototype for the Trusted Computing

Exemplar Project,” Master’s Thesis, Naval Postgraduate School, December 2009.

[8] World Wide Web Consortium, “Web Services Policy 1.5 – Framework,” W3C

Recommendation 04 September 2007, http://www.w3.org/TR/ws-policy, Last
Accessed: September 2010.

[9] Giovanni Della-Libera et al., “Web Services Security Policy Language Version

1.1,” July 2005, http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-
securitypolicy.pdf, Last Accessed: September 2010.

[10] World Wide Web Consortium, “XML Schema Part 0: Primer Second Edition,”

W3C Recommendation 28 October 2004, http://www.w3.org/TR/2004/REC-
xmlschema-0-20041028, Last Accessed: September 2010.

[11] World Wide Web Consortium, “XML Schema Part 1: Structures Second Edition,”

W3C Recommendation 28 October 2004, http://www.w3.org/TR/2004/REC-
xmlschema-1-20041028, Last Accessed: September 2010.

http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf�
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf�

 158

[12] World Wide Web Consortium, “XML Schema Part 2: Datatypes Second Edition,”
W3C Recommendation 28 October 2004, http://www.w3.org/TR/2004/REC-
xmlschema-2-20041028, Last Accessed: September 2010.

[13] World Wide Web Consortium, “Guide to the W3C XML Specification

("XMLspec") DTD, Version 2.1,” http://www.w3.org/XML/1998/06/xmlspec-
report.htm, Last Accessed: September 2010.

[14] World Wide Web Consortium, “Document Object Model (DOM) Level 1

Specification Version 1.0,” W3C Recommendation, 1 October, 1998,
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001, Last Accessed:
September 2010

[15] SourceForge.Net, “About SAX,” http://www.saxproject.org/about.html, Last

Accessed: September 2010.

[16] National Institute of Standards and Technology, “NIST’s Policy on Hash

Functions,” http://csrc.nist.gov/groups/ST/hash/policy.html, 15 March 2006, Last
Accessed: October 2010.

[17] B. Doyle, “XML Editors Review,” June 13, 2006,

http://www.cmsreview.com/XML/Editors, Last Accessed: September 2010.

[18] Oracle, “Java TM Cryptography Architecture API Specification & Reference,”

http://download.oracle.com/javase/1.5.0/docs/guide/security/CryptoSpec.html, 25
July 2004, Last Accessed: September 2010.

[19] Wind River, “Wind River VxWorks MILS Platform Features,”

http://cdn.windriver.com/products/platforms/vxworks-mils/features.html, Last
Accessed: November 2010.

[20] Lynuxworks, “LynxSecure Embedded Hypervisor and Separation Kernel,”
http://www.lynuxworks.com/virtualization/hypervisor.php, Last Accessed:
November 2010.

[21] Green Hills Software, “W3C XML Schema Definition Language (XSD) 1.1 Part
1: Structures,” W3C Working Draft 3 December 2009, Last Accessed: September
2010.

[22] World Wide Web Consortium, “W3C XML Schema Definition Language (XSD)
1.1 Part 1: Structures,” W3C Working Draft 3 December 2009, Last Accessed:
September 2010.

[23] World Wide Web Consortium, “XML Path Language (XPath) 2.0,” W3C

Recommendation 23 January 2007, Last Accessed: September 2010.

 159

[24] International Organization for Standardization, “Information technology –
Document Schema Definition Languages (DSDL) Part 2: Regular-grammar-based
validation - RELAX NG,” ISO/IEC 19757-2, 1 June 2006.

[25] International Organization for Standardization, “Information technology -

Document Schema Definition Languages (DSDL) Part 3: Rule-based validation –
Schematron,” ISO/IEC 19757-3, 1 June 2006.

 160

THIS PAGE INTENTIONALLY LEFT BLANK

 161

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, VA

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, CA

3. Kris Britton
 National Security Agency
 Fort Meade, MD

4. John Campbell
 National Security Agency
 Fort Meade, MD

5. Deborah Cooper
 DC Associates, LLC
 Reston, VA

6. Grace Crowder
 NSA
 Fort Meade, MD

7. Louise Davidson
 National Geospatial Agency
 Bethesda, MD

8. Vincent J. DiMaria
 National Security Agency
 Fort Meade, MD

9. Rob Dobry
 NSA
 Fort Meade, MD

10. Jennifer Guild
 SPAWAR
 Charleston, SC

11. CDR Scott Heller
 SPAWAR
 Charleston, SC

 162

12. Dr. Steven King
 ODUSD
 Washington, DC

13. Steve LaFountain
 NSA
 Fort Meade, MD

14. Dr. Greg Larson
 IDA
 Alexandria, VA

15. Dr. Carl Landwehr
 National Science Foundation
 Arlington, VA

16. Dr. John Monastra
 Aerospace Corporation
 Chantilly, VA

17. John Mildner
 SPAWAR
 Charleston, SC

18. Dr. Victor Piotrowski
 National Science Foundation
 Arlington Virginia

19. Jim Roberts
 Central Intelligence Agency
 Reston, VA

20. Ed Schneider
 IDA
 Alexandria, VA

21. Mark Schneider
 NSA
 Fort Meade, MD

22. Keith Schwalm
 Good Harbor Consulting, LLC
 Washington, DC

 163

23. Ken Shotting
 NSA
 Fort Meade, MD

24. Dr. Ralph Wachter
 ONR
 Arlington, VA

25. Dr. Cynthia E. Irvine
 Naval Postgraduate School
 Monterey, CA

26. Paul C. Clark
 Naval Postgraduate School
 Monterey, CA

27. Yeo Tat Soon
 National University of Singapore
 Singapore

28. Tan Lai Poh
 National University of Singapore

Singapore

29. Quek Chee Luan
 Defence Science & Technology Agency
 Singapore

	I. INTRODUCTION
	A. MOTIVATION
	B. PURPOSE OF STUDY
	C. THESIS ORGANIZATION

	II. BACKGROUND
	A. THE LEAST PRIVILEGE SEPARATION KERNEL
	B. THE LPSK CONFIGURATION VECTOR
	C. THE LPSK CONFIGURATION VECTOR TOOL
	D. OVERVIEW OF XML AND RELATED STANDARDS
	1. Extensible Markup Language (XML)
	2. XML Schema
	3. Document Object Model and Simple API for XML

	E. BENEFITS OF AN XML-BASED CONFIGURATION VECTOR
	F. SUMMARY

	III. CONFIGURATION VECTOR TOOL REQUIREMENTS
	A. HIGH-LEVEL REQUIREMENTS
	B. DETAILED REQUIREMENTS
	1. Configuration Vector Format
	a. Header
	b. Audit Buffer Configuration
	c. Run-Time LPSK
	d. Partitions
	e. Partition Flow Policies
	f. Resources

	2. XML Representation
	3. Binary Representation
	4. Graphical User Interface (GUI)
	a. Basic Functional Requirements
	b. Usability Requirements

	5. Format Conversion
	6. Keyed-hash Message Authentication Code Generation

	C. SUMMARY

	IV. EVALUATION OF XML EDITORS
	A. INITIAL SELECTION CRITERIA
	1. Graphical XML Editor
	2. XSD Validation
	3. Availability of U.S. Vendor
	4. OS Platform Support
	5. Type
	6. License Pricing
	7. Open-source
	8. License Type

	B. OUTCOME OF INITIAL SELECTION
	C. FEATURES COMPARISON
	1. Nested Grid View
	2. Source-Code View
	3. Auto-Completion
	4. Embedded XML Schema Editor
	5. Error Handling

	D. FINAL EVALUATION OUTCOME
	E. SUMMARY

	V. DESIGN AND IMPLEMENTATION
	A. CONFIGURATION VECTOR FORMAT
	1. XML Representation
	2. Binary Representation

	B. CONFIGURATION VECTOR TOOL UTILITIES
	1. Format Conversion
	2. Keyed-Hash Message Authentication Code Generation

	C. SUMMARY

	VI. TESTING
	A. TEST CASES
	1. Functional Tests
	2. Boundary Value Tests
	3. Consistency Checking Tests

	B. TEST RESULTS
	C. SUMMARY

	VII. CONCLUSION
	A. RESULTS
	B RELATED WORK
	C. RECOMMENDATIONS FOR FUTURE WORK

	APPENDIX A. INSTALLATION GUIDE
	A. SYSTEM REQUIREMENTS
	B. PROCEDURES

	APPENDIX B. TEST PROCEDURES
	A. SETUP
	B. PROCEDURES
	1. Functional Tests
	2. Boundary Value Tests
	3. Consistency Checking Tests

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

